Displaying similar documents to “Applications of limited information strategies in Menger's game”

Topological games and product spaces

Salvador García-Ferreira, R. A. González-Silva, Artur Hideyuki Tomita (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we deal with the product of spaces which are either 𝒢 -spaces or 𝒢 p -spaces, for some p ω * . These spaces are defined in terms of a two-person infinite game over a topological space. All countably compact spaces are 𝒢 -spaces, and every 𝒢 p -space is a 𝒢 -space, for every p ω * . We prove that if { X μ : μ < ω 1 } is a set of spaces whose product X = μ < ω 1 X μ is a 𝒢 -space, then there is A [ ω 1 ] ω such that X μ is countably compact for every μ ω 1 A . As a consequence, X ω 1 is a 𝒢 -space iff X ω 1 is countably compact, and if X 2 𝔠 is a 𝒢 -space,...

Nash -equilibria for stochastic games with total reward functions: an approach through Markov decision processes

Francisco J. González-Padilla, Raúl Montes-de-Oca (2019)

Kybernetika

Similarity:

The main objective of this paper is to find structural conditions under which a stochastic game between two players with total reward functions has an ϵ -equilibrium. To reach this goal, the results of Markov decision processes are used to find ϵ -optimal strategies for each player and then the correspondence of a better answer as well as a more general version of Kakutani’s Fixed Point Theorem to obtain the ϵ -equilibrium mentioned. Moreover, two examples to illustrate the theory developed...

Linear complementarity problems and bi-linear games

Gokulraj Sengodan, Chandrashekaran Arumugasamy (2020)

Applications of Mathematics

Similarity:

In this paper, we define bi-linear games as a generalization of the bimatrix games. In particular, we generalize concepts like the value and equilibrium of a bimatrix game to the general linear transformations defined on a finite dimensional space. For a special type of 𝐙 -transformation we observe relationship between the values of the linear and bi-linear games. Using this relationship, we prove some known classical results in the theory of linear complementarity problems for this type...

Infinite games and chain conditions

Santi Spadaro (2016)

Fundamenta Mathematicae

Similarity:

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin’s Problem and Arhangel’skii’s problem on the weak Lindelöf number of the G δ topology on a compact space. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable, and 2) in every compact space satisfying the game-theoretic version of the weak...

Equilibrium analysis of distributed aggregative game with misinformation

Meng Yuan, Zhaoyang Cheng, Te Ma (2024)

Kybernetika

Similarity:

This paper considers a distributed aggregative game problem for a group of players with misinformation, where each player has a different perception of the game. Player’s deception behavior is inevitable in this situation for reducing its own cost. We utilize hypergame to model the above problems and adopt ϵ -Nash equilibrium for hypergame to investigate whether players believe in their own cognition. Additionally, we propose a distributed deceptive algorithm for a player implementing...

Generalized Choquet spaces

Samuel Coskey, Philipp Schlicht (2016)

Fundamenta Mathematicae

Similarity:

We introduce an analog to the notion of Polish space for spaces of weight ≤ κ, where κ is an uncountable regular cardinal such that κ < κ = κ . Specifically, we consider spaces in which player II has a winning strategy in a variant of the strong Choquet game which runs for κ many rounds. After discussing the basic theory of these games and spaces, we prove that there is a surjectively universal such space and that there are exactly 2 κ many such spaces up to homeomorphism. We also establish a Kuratowski-like...

An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games

Kristal K. Trejo, Julio B. Clempner, Alexander S. Poznyak (2016)

Kybernetika

Similarity:

This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative n -leaders and m -followers Markov game we consider the minimization of the L p - norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong...

Empirical approximation in Markov games under unbounded payoff: discounted and average criteria

Fernando Luque-Vásquez, J. Adolfo Minjárez-Sosa (2017)

Kybernetika

Similarity:

This work deals with a class of discrete-time zero-sum Markov games whose state process x t evolves according to the equation x t + 1 = F ( x t , a t , b t , ξ t ) , where a t and b t represent the actions of player 1 and 2, respectively, and ξ t is a sequence of independent and identically distributed random variables with unknown distribution θ . Assuming possibly unbounded payoff, and using the empirical distribution to estimate θ , we introduce approximation schemes for the value of the game as well as for optimal strategies considering...

Lindelöf indestructibility, topological games and selection principles

Marion Scheepers, Franklin D. Tall (2010)

Fundamenta Mathematicae

Similarity:

Arhangel’skii proved that if a first countable Hausdorff space is Lindelöf, then its cardinality is at most 2 . Such a clean upper bound for Lindelöf spaces in the larger class of spaces whose points are G δ has been more elusive. In this paper we continue the agenda started by the second author, [Topology Appl. 63 (1995)], of considering the cardinality problem for spaces satisfying stronger versions of the Lindelöf property. Infinite games and selection principles, especially the Rothberger...

Some new versions of an old game

Vladimir Vladimirovich Tkachuk (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The old game is the point-open one discovered independently by F. Galvin [7] and R. Telgársky [17]. Recall that it is played on a topological space X as follows: at the n -th move the first player picks a point x n X and the second responds with choosing an open U n x n . The game stops after ω moves and the first player wins if { U n : n ω } = X . Otherwise the victory is ascribed to the second player. In this paper we introduce and study the games θ and Ω . In θ the moves are made exactly as in the point-open game,...

On the Variational Inequality and Tykhonov Well-Posedness in Game Theory

C. A. Pensavalle, G. Pieri (2010)

Bollettino dell'Unione Matematica Italiana

Similarity:

Consider a M-player game in strategic form G = ( X 1 , , X M , g 1 , , g M ) where the set X i is a closed interval of real numbers and the payoff function g i is concave and differentiable with respect to the variable x i X i , for any i = 1 , , M . The aim of this paper is to find appropriate conditions on the payoff functions under the well-posedness with respect to the related variational inequality is equivalent to the formulation of the Tykhonov well-posedness in a game context. The idea of the proof is to appeal to a third equivalence,...