Improving the performance of semiglobal output controllers for nonlinear systems

Abdallah Benabdallah; Walid Hdidi

Kybernetika (2017)

  • Volume: 53, Issue: 2, page 296-330
  • ISSN: 0023-5954

Abstract

top
For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing output feedback controllers ( 𝒰 R ) R > 0 with increasing regions of attraction ( Ω R ) R > 0 is that, when the region of attraction Ω R is large, the convergence of solutions of the closed-loop system to the origin becomes slow. To improve the performance of a semiglobal controller, we look for a new feedback control law that preserves the semiglobal stability of the nonlinear system under consideration and that is equal to some “fast” controller 𝒰 R 0 on a neighborhood of the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new semiglobal stabilizing hybrid feedback controller that unifies a “slow” controller that has a large region of attraction with a “fast” controller having a small region of attraction. This unification is inspired from the elegant hybrid unification of a local controller with a global one given in [21]. Moreover, this unification is different from the recent result [24], since in the cited paper the objective is just the stabilization; whereas in our study, the objective is the stabilization with high performance. Finally, we illustrate our main result by means of two numerical examples.

How to cite

top

Benabdallah, Abdallah, and Hdidi, Walid. "Improving the performance of semiglobal output controllers for nonlinear systems." Kybernetika 53.2 (2017): 296-330. <http://eudml.org/doc/288195>.

@article{Benabdallah2017,
abstract = {For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing output feedback controllers $(\mathcal \{U\}_R)_\{R>0\}$ with increasing regions of attraction $(\Omega _R)_\{R>0\}$ is that, when the region of attraction $\Omega _R$ is large, the convergence of solutions of the closed-loop system to the origin becomes slow. To improve the performance of a semiglobal controller, we look for a new feedback control law that preserves the semiglobal stability of the nonlinear system under consideration and that is equal to some “fast” controller $\mathcal \{U\}_\{R_0\}$ on a neighborhood of the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new semiglobal stabilizing hybrid feedback controller that unifies a “slow” controller that has a large region of attraction with a “fast” controller having a small region of attraction. This unification is inspired from the elegant hybrid unification of a local controller with a global one given in [21]. Moreover, this unification is different from the recent result [24], since in the cited paper the objective is just the stabilization; whereas in our study, the objective is the stabilization with high performance. Finally, we illustrate our main result by means of two numerical examples.},
author = {Benabdallah, Abdallah, Hdidi, Walid},
journal = {Kybernetika},
keywords = {nonlinear system; hybrid output feedback; semiglobal output stabilization; local performance},
language = {eng},
number = {2},
pages = {296-330},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Improving the performance of semiglobal output controllers for nonlinear systems},
url = {http://eudml.org/doc/288195},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Benabdallah, Abdallah
AU - Hdidi, Walid
TI - Improving the performance of semiglobal output controllers for nonlinear systems
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 2
SP - 296
EP - 330
AB - For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing output feedback controllers $(\mathcal {U}_R)_{R>0}$ with increasing regions of attraction $(\Omega _R)_{R>0}$ is that, when the region of attraction $\Omega _R$ is large, the convergence of solutions of the closed-loop system to the origin becomes slow. To improve the performance of a semiglobal controller, we look for a new feedback control law that preserves the semiglobal stability of the nonlinear system under consideration and that is equal to some “fast” controller $\mathcal {U}_{R_0}$ on a neighborhood of the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new semiglobal stabilizing hybrid feedback controller that unifies a “slow” controller that has a large region of attraction with a “fast” controller having a small region of attraction. This unification is inspired from the elegant hybrid unification of a local controller with a global one given in [21]. Moreover, this unification is different from the recent result [24], since in the cited paper the objective is just the stabilization; whereas in our study, the objective is the stabilization with high performance. Finally, we illustrate our main result by means of two numerical examples.
LA - eng
KW - nonlinear system; hybrid output feedback; semiglobal output stabilization; local performance
UR - http://eudml.org/doc/288195
ER -

References

top
  1. Ahmed-Ali, T., Assche, V. Van, Massieu, J., Dorleans, P., 10.1109/tac.2012.2225555, IEEE Trans. Automat. Control 58 (2013), 4, 1085-1091. MR3038816DOI10.1109/tac.2012.2225555
  2. Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F., 10.1016/j.sysconle.2013.03.008, System Control Lett. 62 (2013), 7, 539-549. Zbl1277.93051MR3068156DOI10.1016/j.sysconle.2013.03.008
  3. Andrieu, V., Praly, L., 10.1016/j.automatica.2009.04.015, Automatica 45 (2009), 8, 1789-1798. Zbl1185.93114MR2879499DOI10.1016/j.automatica.2009.04.015
  4. Efimov, D. V., 10.1016/j.automatica.2005.11.003, Automatica 42 (2006), 489-495. Zbl1123.93082MR2195253DOI10.1016/j.automatica.2005.11.003
  5. Efimov, D. V., Loria, A., Panteley, E., 10.1002/rnc.1660, Int. J. Robust Nonlinear Control 21 (2011), 10, 1219-1236. Zbl1225.93095MR2839847DOI10.1002/rnc.1660
  6. Freeman, R., Kokotovic, P., 10.1007/978-0-8176-4759-9, Birkhauser, Boston 1996. Zbl1130.93005MR1396307DOI10.1007/978-0-8176-4759-9
  7. Gauthier, J., Hammouri, H., Othman, S., 10.1109/9.256352, IEEE Trans. Automat. Control 37 (1992), 875-880. MR1164571DOI10.1109/9.256352
  8. Goebel, R., Sanfelice, R. G., Teel, A. R., Hybrid Dynamical Systems: Modeling, Stability, and Robustness., Princeton University Press 2012. Zbl1241.93002MR2918932
  9. Geobel, R., Teel, A. R., 10.1016/j.automatica.2005.12.019, Automatica 42 (2006), 573-587. MR2200351DOI10.1016/j.automatica.2005.12.019
  10. Isidori, A., 10.1007/978-1-84628-615-5, Springer Verlag, London 1995. MR1410988DOI10.1007/978-1-84628-615-5
  11. Jiang, Z. P., 10.3166/ejc.8.531-534, Europ. J. Control 8 (2002), 6, 531-534. DOI10.3166/ejc.8.531-534
  12. Jouan, P., Gauthier, J., 10.1007/bf02259528, J. Dynamical Control Systems 2 (1996), 2, 255-288. Zbl0944.93026MR1388697DOI10.1007/bf02259528
  13. Khalil, H., Esfandiari, F., 10.1109/9.237658, IEEE Trans. Automat. Control 38 (1993), 2, 1412-1415. Zbl0787.93079MR1240837DOI10.1109/9.237658
  14. Krichman, M., Sontag, E., Wang, Y., 10.1137/s0363012999365352, SIAM J. Control Optim. 39 (2001), 1874-1928. Zbl1005.93044MR1825868DOI10.1137/s0363012999365352
  15. Marino, R., Tomei, P., 10.1109/tac.2005.858652, IEEE Trans. Automat. Control 50 (2005), 2097-2101. MR2186285DOI10.1109/tac.2005.858652
  16. Mazenc, F., Vivalda, J. C., 10.3166/ejc.8.519-530, Europ. J. Control 8 (2002), 6, 519-530. Zbl1293.93613DOI10.3166/ejc.8.519-530
  17. Pan, Z., Ezal, K., Krener, A. J., Kokotovic, P. V., 10.1109/9.935055, IEEE Trans. Automat. Control 46 (2001), 7, 1014-1027. Zbl1007.93025MR1842136DOI10.1109/9.935055
  18. Praly, L., 10.1109/tac.2003.812819, IEEE Trans. Automat. Control 48 (2003), 12, 1103-1108. MR1986287DOI10.1109/tac.2003.812819
  19. Praly, L., Teel, A. R., 10.1137/s0363012992241430, SIAM J. Control Optim. 33 (1995), 5, 1443-1488. Zbl0843.93057MR1348117DOI10.1137/s0363012992241430
  20. Prieur, C., Goebel, R., Teel, A. R., 10.1109/tac.2007.908320, IEEE Trans. Automat. Control 52 (2007), 11, 2103-2117. MR2361804DOI10.1109/tac.2007.908320
  21. Prieur, C., Teel, A. R., 10.1109/tac.2010.2091436, IEEE Trans. Automat. Control 56 (2011), 1636-1649. MR2848274DOI10.1109/tac.2010.2091436
  22. Qian, C., Lin, W., 10.1109/tac.2002.803542, IEEE Trans. Automat. Control 47 (2002), 10, 1710-1715. MR1929946DOI10.1109/tac.2002.803542
  23. Sanfelice, R. G., Goebel, R., 10.1051/cocv:2008008, ESAIM: Control, Optimisation and Calculus of Variations 14 (2008), 699-724. Zbl1147.93032MR2451791DOI10.1051/cocv:2008008
  24. Sanfelice, R. G., Prieur, C., 10.1016/j.automatica.2013.03.009, Automatica 49 (2013), 1958-1969. MR3063051DOI10.1016/j.automatica.2013.03.009
  25. Shen, Y., Zhang, D., Huang, Y., Liu, Y., 10.1080/00207721.2015.1091899, Int. J. Systems Sci. 47 (2016), 15, 3545-3553. MR3511491DOI10.1080/00207721.2015.1091899
  26. Shen, Y., Zhang, D., Xia, X., 10.1080/00207721.2015.1091899, Int. J. Robust. Nonlinear Control 26 (2016), 14, 3075-3087. Zbl1346.93320MR3537171DOI10.1080/00207721.2015.1091899
  27. Sontag, E. D., 10.1007/978-1-4612-0577-7, Springer, New York 1998. MR1640001DOI10.1007/978-1-4612-0577-7
  28. Sontag, E. D., Wang, Y., 10.1016/s0167-6911(97)90013-x, Systems Control Lett. 29 (1997), 5, 279-290. Zbl0901.93062MR1432653DOI10.1016/s0167-6911(97)90013-x
  29. Tarbouriech, S., Garcia, G., Jr., J. M. G. da Silva, Queinnec, I., 10.1007/978-0-85729-941-3, Springer-Verlag, London 2011. Zbl1279.93004MR3024786DOI10.1007/978-0-85729-941-3
  30. Teel, A. R., Kapoor, N., Uniting global and local controllers., In: European Control Conference, Brussels 1997. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.