Polytopes, quasi-minuscule representations and rational surfaces
Jae-Hyouk Lee; Mang Xu; Jiajin Zhang
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 397-415
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLee, Jae-Hyouk, Xu, Mang, and Zhang, Jiajin. "Polytopes, quasi-minuscule representations and rational surfaces." Czechoslovak Mathematical Journal 67.2 (2017): 397-415. <http://eudml.org/doc/288198>.
@article{Lee2017,
abstract = {We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.},
author = {Lee, Jae-Hyouk, Xu, Mang, Zhang, Jiajin},
journal = {Czechoslovak Mathematical Journal},
keywords = {rational surface; minuscule representation; polytope},
language = {eng},
number = {2},
pages = {397-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Polytopes, quasi-minuscule representations and rational surfaces},
url = {http://eudml.org/doc/288198},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Lee, Jae-Hyouk
AU - Xu, Mang
AU - Zhang, Jiajin
TI - Polytopes, quasi-minuscule representations and rational surfaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 397
EP - 415
AB - We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.
LA - eng
KW - rational surface; minuscule representation; polytope
UR - http://eudml.org/doc/288198
ER -
References
top- Bourbaki, N., 10.1007/978-3-540-89394-3, Springer, Berlin (2002). (2002) Zbl0983.17001MR1890629DOI10.1007/978-3-540-89394-3
- Coxeter, H. S. M., 10.1007/BF01161657, Math. Z. 188 (1985), 559-591. (1985) Zbl0547.52005MR0774558DOI10.1007/BF01161657
- Coxeter, H. S. M., 10.1007/BF01161745, Math. Z. 200 (1988), 3-45. (1988) Zbl0633.52006MR0972395DOI10.1007/BF01161745
- Coxeter, H. S. M., The evolution of Coxeter-Dynkin diagrams, Nieuw Arch. Wiskd., IV. Ser. 9 (1991), 233-248. (1991) Zbl0759.20013MR1166143
- Demazure, M., Pinkham, H., (eds.), B. Teissier, 10.1007/BFb0085872, Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau 1976-1977, Lecture Notes in Mathematics 777, Springer, Berlin (1980), French. (1980) Zbl0415.00010MR0579026DOI10.1007/BFb0085872
- Donagi, R. Y., 10.4310/AJM.1997.v1.n2.a1, Asian J. Math. 1 (1997), 214-223. (1997) Zbl0927.14006MR1491982DOI10.4310/AJM.1997.v1.n2.a1
- Donagi, R., Taniguchi lectures on principal bundles on elliptic fibrations, Integrable Systems and Algebraic Geometry Conf. Proc., Kobe/Kyoto, 1997, World Scientific, Singapore (1998), 33-46. (1998) Zbl0963.14004MR1672104
- Friedman, R., Morgan, J., Witten, E., 10.1007/s002200050154, Commun. Math. Phys. 187 (1997), 679-743. (1997) Zbl0919.14010MR1468319DOI10.1007/s002200050154
- Henry-Labordère, P., Julia, B., Paulot, L., 10.1088/1126-6708/2002/04/049, J. High Energy Phys. 2002 (2002), No. 49, 31 pages. (2002) MR1911396DOI10.1088/1126-6708/2002/04/049
- Henry-Labordère, P., Julia, B., Paulot, L., 10.1088/1126-6708/2003/04/060, J. High Energy Phys. 2003 (2003), No. 60, 21 pages. (2003) MR1989546DOI10.1088/1126-6708/2003/04/060
- Lee, J.-H., 10.4153/CJM-2011-063-6, Can. J. Math. 64 (2012), 123-150. (2012) Zbl1268.14038MR2932172DOI10.4153/CJM-2011-063-6
- Lee, J.-H., 10.1216/RMJ-2016-46-4-1263, Rocky Mt. J. Math. 46 (2016), 1263-1273. (2016) Zbl06642645MR3563181DOI10.1216/RMJ-2016-46-4-1263
- Leung, N. C., ADE-bundle over rational surfaces, configuration of lines and rulings, Available at arXiv:math.AG/0009192.
- Leung, N. C., Xu, M., Zhang, J., 10.1007/s00208-011-0661-4, Math. Ann. 352 (2012), 805-828. (2012) Zbl1242.14036MR2892453DOI10.1007/s00208-011-0661-4
- Leung, N. C., Zhang, J., 10.1112/jlms/jdp053, J. Lond. Math. Soc., II. Ser. 80 (2009), 750-770. (2009) Zbl1188.14025MR2559127DOI10.1112/jlms/jdp053
- Looijenga, E., 10.1007/BF01390167, Invent. Math. 38 (1976), 17-32. (1976) Zbl0358.17016MR0466134DOI10.1007/BF01390167
- Manin, Y. I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Mathematical Library 4, North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1974). (1974) Zbl0277.14014MR0460349
- Manivel, L., 10.1016/j.jalgebra.2006.04.029, J. Algebra 304 (2006), 457-486. (2006) Zbl1167.17001MR2256401DOI10.1016/j.jalgebra.2006.04.029
- Seshadri, C. S., Geometry of . I: Theory of standard monomials for minuscule representations, C. P. Ramanujam---A Tribute Tata Inst. Fundam. Res., Stud. Math. 8, Springer, Berlin (1978), 207-239. (1978) Zbl0447.14010MR0541023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.