Polytopes, quasi-minuscule representations and rational surfaces

Jae-Hyouk Lee; Mang Xu; Jiajin Zhang

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 397-415
  • ISSN: 0011-4642

Abstract

top
We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.

How to cite

top

Lee, Jae-Hyouk, Xu, Mang, and Zhang, Jiajin. "Polytopes, quasi-minuscule representations and rational surfaces." Czechoslovak Mathematical Journal 67.2 (2017): 397-415. <http://eudml.org/doc/288198>.

@article{Lee2017,
abstract = {We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.},
author = {Lee, Jae-Hyouk, Xu, Mang, Zhang, Jiajin},
journal = {Czechoslovak Mathematical Journal},
keywords = {rational surface; minuscule representation; polytope},
language = {eng},
number = {2},
pages = {397-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Polytopes, quasi-minuscule representations and rational surfaces},
url = {http://eudml.org/doc/288198},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Lee, Jae-Hyouk
AU - Xu, Mang
AU - Zhang, Jiajin
TI - Polytopes, quasi-minuscule representations and rational surfaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 397
EP - 415
AB - We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.
LA - eng
KW - rational surface; minuscule representation; polytope
UR - http://eudml.org/doc/288198
ER -

References

top
  1. Bourbaki, N., 10.1007/978-3-540-89394-3, Springer, Berlin (2002). (2002) Zbl0983.17001MR1890629DOI10.1007/978-3-540-89394-3
  2. Coxeter, H. S. M., 10.1007/BF01161657, Math. Z. 188 (1985), 559-591. (1985) Zbl0547.52005MR0774558DOI10.1007/BF01161657
  3. Coxeter, H. S. M., 10.1007/BF01161745, Math. Z. 200 (1988), 3-45. (1988) Zbl0633.52006MR0972395DOI10.1007/BF01161745
  4. Coxeter, H. S. M., The evolution of Coxeter-Dynkin diagrams, Nieuw Arch. Wiskd., IV. Ser. 9 (1991), 233-248. (1991) Zbl0759.20013MR1166143
  5. Demazure, M., Pinkham, H., (eds.), B. Teissier, 10.1007/BFb0085872, Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau 1976-1977, Lecture Notes in Mathematics 777, Springer, Berlin (1980), French. (1980) Zbl0415.00010MR0579026DOI10.1007/BFb0085872
  6. Donagi, R. Y., 10.4310/AJM.1997.v1.n2.a1, Asian J. Math. 1 (1997), 214-223. (1997) Zbl0927.14006MR1491982DOI10.4310/AJM.1997.v1.n2.a1
  7. Donagi, R., Taniguchi lectures on principal bundles on elliptic fibrations, Integrable Systems and Algebraic Geometry Conf. Proc., Kobe/Kyoto, 1997, World Scientific, Singapore (1998), 33-46. (1998) Zbl0963.14004MR1672104
  8. Friedman, R., Morgan, J., Witten, E., 10.1007/s002200050154, Commun. Math. Phys. 187 (1997), 679-743. (1997) Zbl0919.14010MR1468319DOI10.1007/s002200050154
  9. Henry-Labordère, P., Julia, B., Paulot, L., 10.1088/1126-6708/2002/04/049, J. High Energy Phys. 2002 (2002), No. 49, 31 pages. (2002) MR1911396DOI10.1088/1126-6708/2002/04/049
  10. Henry-Labordère, P., Julia, B., Paulot, L., 10.1088/1126-6708/2003/04/060, J. High Energy Phys. 2003 (2003), No. 60, 21 pages. (2003) MR1989546DOI10.1088/1126-6708/2003/04/060
  11. Lee, J.-H., 10.4153/CJM-2011-063-6, Can. J. Math. 64 (2012), 123-150. (2012) Zbl1268.14038MR2932172DOI10.4153/CJM-2011-063-6
  12. Lee, J.-H., 10.1216/RMJ-2016-46-4-1263, Rocky Mt. J. Math. 46 (2016), 1263-1273. (2016) Zbl06642645MR3563181DOI10.1216/RMJ-2016-46-4-1263
  13. Leung, N. C., ADE-bundle over rational surfaces, configuration of lines and rulings, Available at arXiv:math.AG/0009192. 
  14. Leung, N. C., Xu, M., Zhang, J., 10.1007/s00208-011-0661-4, Math. Ann. 352 (2012), 805-828. (2012) Zbl1242.14036MR2892453DOI10.1007/s00208-011-0661-4
  15. Leung, N. C., Zhang, J., 10.1112/jlms/jdp053, J. Lond. Math. Soc., II. Ser. 80 (2009), 750-770. (2009) Zbl1188.14025MR2559127DOI10.1112/jlms/jdp053
  16. Looijenga, E., 10.1007/BF01390167, Invent. Math. 38 (1976), 17-32. (1976) Zbl0358.17016MR0466134DOI10.1007/BF01390167
  17. Manin, Y. I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Mathematical Library 4, North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1974). (1974) Zbl0277.14014MR0460349
  18. Manivel, L., 10.1016/j.jalgebra.2006.04.029, J. Algebra 304 (2006), 457-486. (2006) Zbl1167.17001MR2256401DOI10.1016/j.jalgebra.2006.04.029
  19. Seshadri, C. S., Geometry of G / P . I: Theory of standard monomials for minuscule representations, C. P. Ramanujam---A Tribute Tata Inst. Fundam. Res., Stud. Math. 8, Springer, Berlin (1978), 207-239. (1978) Zbl0447.14010MR0541023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.