The general rigidity result for bundles of -covelocities and -jets
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 297-316
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTomáš, Jiří M.. "The general rigidity result for bundles of $A$-covelocities and $A$-jets." Czechoslovak Mathematical Journal 67.2 (2017): 297-316. <http://eudml.org/doc/288199>.
@article{Tomáš2017,
abstract = {Let $M$ be an $m$-dimensional manifold and $A=\mathbb \{D\}^r_k /I=\mathbb \{R\} \oplus N_A$ a Weil algebra of height $r$. We prove that any $A$-covelocity $T^A_x f \in T^\{A*\}_x M$, $x \in M$ is determined by its values over arbitrary $\max \lbrace \mathop \{\rm width\}A, m \rbrace $ regular and under the first jet projection linearly independent elements of $T^A_xM$. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result $T^\{A*\}M \simeq T^\{r*\}M$ without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from $m \ge k$ to all cases of $m$. We also introduce the space $J^A(M,N)$ of $A$-jets and prove its rigidity in the sense of its coincidence with the classical jet space $J^r(M,N)$.},
author = {Tomáš, Jiří M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$r$-jet; bundle functor; Weil functor; Lie group; jet group; $B$-admissible $A$-velocity},
language = {eng},
number = {2},
pages = {297-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The general rigidity result for bundles of $A$-covelocities and $A$-jets},
url = {http://eudml.org/doc/288199},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Tomáš, Jiří M.
TI - The general rigidity result for bundles of $A$-covelocities and $A$-jets
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 297
EP - 316
AB - Let $M$ be an $m$-dimensional manifold and $A=\mathbb {D}^r_k /I=\mathbb {R} \oplus N_A$ a Weil algebra of height $r$. We prove that any $A$-covelocity $T^A_x f \in T^{A*}_x M$, $x \in M$ is determined by its values over arbitrary $\max \lbrace \mathop {\rm width}A, m \rbrace $ regular and under the first jet projection linearly independent elements of $T^A_xM$. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result $T^{A*}M \simeq T^{r*}M$ without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from $m \ge k$ to all cases of $m$. We also introduce the space $J^A(M,N)$ of $A$-jets and prove its rigidity in the sense of its coincidence with the classical jet space $J^r(M,N)$.
LA - eng
KW - $r$-jet; bundle functor; Weil functor; Lie group; jet group; $B$-admissible $A$-velocity
UR - http://eudml.org/doc/288199
ER -
References
top- Alonso, R. J., Jet manifolds associated to a Weil bundle, Arch. Math., Brno 36 (2000), 195-209. (2000) Zbl1049.58007MR1785036
- Alonso-Blanco, R. J., Blázquez-Sanz, D., The only global contact transformations of order two or more are point transformations, J. Lie Theory 15 (2005), 135-143. (2005) Zbl1073.58006MR2115233
- Bertram, W., 10.1090/memo/0900, Mem. Am. Math. Soc. 192 (2008), 202 pages. (2008) Zbl1144.58002MR2369581DOI10.1090/memo/0900
- Bushueva, G. N., Shurygin, V. V., On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds, Lobachevskii J. Math. (electronic only) 18 (2005), 53-105. (2005) Zbl1083.58005MR2169080
- Eck, D. J., 10.1016/0022-4049(86)90076-9, J. Pure Appl. Algebra 42 (1986), 133-140. (1986) Zbl0615.57019MR0857563DOI10.1016/0022-4049(86)90076-9
- Kainz, G., Michor, P. W., Natural transformations in differential geometry, Czech. Math. J. 37 (1987), 584-607. (1987) Zbl0654.58001MR0913992
- Kolář, I., 10.1016/0022-4049(86)90076-9, Commentat. Math. Univ. Carol. 27 (1986), 723-729. (1986) Zbl0615.57019MR0874666DOI10.1016/0022-4049(86)90076-9
- Kolář, I., Michor, P. W., Slovák, J., 10.1007/978-3-662-02950-3, Springer, Berlin (1993). (1993) Zbl0782.53013MR1202431DOI10.1007/978-3-662-02950-3
- Kolář, I., Mikulski, W. M., 10.1016/S0926-2245(99)00022-4, Differ. Geom. Appl. 11 (1999), 105-115. (1999) Zbl0935.58001MR1712139DOI10.1016/S0926-2245(99)00022-4
- Kureš, M., Weil algebras associated to functors of third order semiholonomic velocities, Math. J. Okayama Univ. 56 (2014), 117-127. (2014) Zbl1315.58003MR3155085
- Luciano, O. O., 10.1017/s0027763000002774, Nagoya Math. J. 109 (1988), 63-89. (1988) Zbl0661.58007MR0931952DOI10.1017/s0027763000002774
- Mikulski, W. M., Product preserving bundle functors on fibered manifolds, Arch. Math., Brno 32 (1996), 307-316. (1996) Zbl0881.58002MR1441401
- Muñoz, J., Rodriguez, J., Muriel, F. J., 10.1023/A:1022408527395, Czech. Math. J. 50 (2000), 721-748. (2000) Zbl1079.58500MR1792967DOI10.1023/A:1022408527395
- Nishimura, H., 10.13164/ma.2012.11, Math. Appl., Brno 1 (2012), 171-182. (2012) Zbl1285.51009MR3275606DOI10.13164/ma.2012.11
- Shurygin, V. V., The structure of smooth mappings over Weil algebras and the category of manifolds over algebras, Lobachevskii J. Math. 5 (1999), 29-55. (1999) Zbl0985.58001MR1752307
- Shurygin, V. V., 10.1007/s10958-010-0051-6, J. Math. Sci., New York 169 (2010), 315-341 translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 123 2009 211-255. (2010) Zbl1226.53032MR2866746DOI10.1007/s10958-010-0051-6
- Tomáš, J. M., 10.1134/S1995080209040064, Lobachevskii J. Math. 30 (2009), 280-288. (2009) Zbl1223.58005MR2587851DOI10.1134/S1995080209040064
- Tomáš, J., Some results on bundles of covelocities, J. Appl. Math., Aplimat V 4 (2011), 297-306. (2011) MR3144090
- Tomáš, J., 10.18514/MMN.2013.914, Miskolc Math. Notes 14 (2013), 547-555. (2013) Zbl1299.58010MR3144090DOI10.18514/MMN.2013.914
- Weil, A., Théorie des points proches sur les variétés des différentiables, Colloques internat. Centre nat. Rech. Sci. 52 (1953), French 111-117. (1953) Zbl0053.24903MR0061455
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.