The general rigidity result for bundles of A -covelocities and A -jets

Jiří M. Tomáš

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 297-316
  • ISSN: 0011-4642

Abstract

top
Let M be an m -dimensional manifold and A = 𝔻 k r / I = N A a Weil algebra of height r . We prove that any A -covelocity T x A f T x A * M , x M is determined by its values over arbitrary max { width A , m } regular and under the first jet projection linearly independent elements of T x A M . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A * M T r * M without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from m k to all cases of m . We also introduce the space J A ( M , N ) of A -jets and prove its rigidity in the sense of its coincidence with the classical jet space J r ( M , N ) .

How to cite

top

Tomáš, Jiří M.. "The general rigidity result for bundles of $A$-covelocities and $A$-jets." Czechoslovak Mathematical Journal 67.2 (2017): 297-316. <http://eudml.org/doc/288199>.

@article{Tomáš2017,
abstract = {Let $M$ be an $m$-dimensional manifold and $A=\mathbb \{D\}^r_k /I=\mathbb \{R\} \oplus N_A$ a Weil algebra of height $r$. We prove that any $A$-covelocity $T^A_x f \in T^\{A*\}_x M$, $x \in M$ is determined by its values over arbitrary $\max \lbrace \mathop \{\rm width\}A, m \rbrace $ regular and under the first jet projection linearly independent elements of $T^A_xM$. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result $T^\{A*\}M \simeq T^\{r*\}M$ without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from $m \ge k$ to all cases of $m$. We also introduce the space $J^A(M,N)$ of $A$-jets and prove its rigidity in the sense of its coincidence with the classical jet space $J^r(M,N)$.},
author = {Tomáš, Jiří M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$r$-jet; bundle functor; Weil functor; Lie group; jet group; $B$-admissible $A$-velocity},
language = {eng},
number = {2},
pages = {297-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The general rigidity result for bundles of $A$-covelocities and $A$-jets},
url = {http://eudml.org/doc/288199},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Tomáš, Jiří M.
TI - The general rigidity result for bundles of $A$-covelocities and $A$-jets
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 297
EP - 316
AB - Let $M$ be an $m$-dimensional manifold and $A=\mathbb {D}^r_k /I=\mathbb {R} \oplus N_A$ a Weil algebra of height $r$. We prove that any $A$-covelocity $T^A_x f \in T^{A*}_x M$, $x \in M$ is determined by its values over arbitrary $\max \lbrace \mathop {\rm width}A, m \rbrace $ regular and under the first jet projection linearly independent elements of $T^A_xM$. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result $T^{A*}M \simeq T^{r*}M$ without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from $m \ge k$ to all cases of $m$. We also introduce the space $J^A(M,N)$ of $A$-jets and prove its rigidity in the sense of its coincidence with the classical jet space $J^r(M,N)$.
LA - eng
KW - $r$-jet; bundle functor; Weil functor; Lie group; jet group; $B$-admissible $A$-velocity
UR - http://eudml.org/doc/288199
ER -

References

top
  1. Alonso, R. J., Jet manifolds associated to a Weil bundle, Arch. Math., Brno 36 (2000), 195-209. (2000) Zbl1049.58007MR1785036
  2. Alonso-Blanco, R. J., Blázquez-Sanz, D., The only global contact transformations of order two or more are point transformations, J. Lie Theory 15 (2005), 135-143. (2005) Zbl1073.58006MR2115233
  3. Bertram, W., 10.1090/memo/0900, Mem. Am. Math. Soc. 192 (2008), 202 pages. (2008) Zbl1144.58002MR2369581DOI10.1090/memo/0900
  4. Bushueva, G. N., Shurygin, V. V., On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds, Lobachevskii J. Math. (electronic only) 18 (2005), 53-105. (2005) Zbl1083.58005MR2169080
  5. Eck, D. J., 10.1016/0022-4049(86)90076-9, J. Pure Appl. Algebra 42 (1986), 133-140. (1986) Zbl0615.57019MR0857563DOI10.1016/0022-4049(86)90076-9
  6. Kainz, G., Michor, P. W., Natural transformations in differential geometry, Czech. Math. J. 37 (1987), 584-607. (1987) Zbl0654.58001MR0913992
  7. Kolář, I., 10.1016/0022-4049(86)90076-9, Commentat. Math. Univ. Carol. 27 (1986), 723-729. (1986) Zbl0615.57019MR0874666DOI10.1016/0022-4049(86)90076-9
  8. Kolář, I., Michor, P. W., Slovák, J., 10.1007/978-3-662-02950-3, Springer, Berlin (1993). (1993) Zbl0782.53013MR1202431DOI10.1007/978-3-662-02950-3
  9. Kolář, I., Mikulski, W. M., 10.1016/S0926-2245(99)00022-4, Differ. Geom. Appl. 11 (1999), 105-115. (1999) Zbl0935.58001MR1712139DOI10.1016/S0926-2245(99)00022-4
  10. Kureš, M., Weil algebras associated to functors of third order semiholonomic velocities, Math. J. Okayama Univ. 56 (2014), 117-127. (2014) Zbl1315.58003MR3155085
  11. Luciano, O. O., 10.1017/s0027763000002774, Nagoya Math. J. 109 (1988), 63-89. (1988) Zbl0661.58007MR0931952DOI10.1017/s0027763000002774
  12. Mikulski, W. M., Product preserving bundle functors on fibered manifolds, Arch. Math., Brno 32 (1996), 307-316. (1996) Zbl0881.58002MR1441401
  13. Muñoz, J., Rodriguez, J., Muriel, F. J., 10.1023/A:1022408527395, Czech. Math. J. 50 (2000), 721-748. (2000) Zbl1079.58500MR1792967DOI10.1023/A:1022408527395
  14. Nishimura, H., 10.13164/ma.2012.11, Math. Appl., Brno 1 (2012), 171-182. (2012) Zbl1285.51009MR3275606DOI10.13164/ma.2012.11
  15. Shurygin, V. V., The structure of smooth mappings over Weil algebras and the category of manifolds over algebras, Lobachevskii J. Math. 5 (1999), 29-55. (1999) Zbl0985.58001MR1752307
  16. Shurygin, V. V., 10.1007/s10958-010-0051-6, J. Math. Sci., New York 169 (2010), 315-341 translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 123 2009 211-255. (2010) Zbl1226.53032MR2866746DOI10.1007/s10958-010-0051-6
  17. Tomáš, J. M., 10.1134/S1995080209040064, Lobachevskii J. Math. 30 (2009), 280-288. (2009) Zbl1223.58005MR2587851DOI10.1134/S1995080209040064
  18. Tomáš, J., Some results on bundles of covelocities, J. Appl. Math., Aplimat V 4 (2011), 297-306. (2011) MR3144090
  19. Tomáš, J., 10.18514/MMN.2013.914, Miskolc Math. Notes 14 (2013), 547-555. (2013) Zbl1299.58010MR3144090DOI10.18514/MMN.2013.914
  20. Weil, A., Théorie des points proches sur les variétés des différentiables, Colloques internat. Centre nat. Rech. Sci. 52 (1953), French 111-117. (1953) Zbl0053.24903MR0061455

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.