Regularly weakly based modules over right perfect rings and Dedekind domains
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 367-377
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHrbek, Michal, and Růžička, Pavel. "Regularly weakly based modules over right perfect rings and Dedekind domains." Czechoslovak Mathematical Journal 67.2 (2017): 367-377. <http://eudml.org/doc/288203>.
@article{Hrbek2017,
abstract = {A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.},
author = {Hrbek, Michal, Růžička, Pavel},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak basis; regularly weakly based ring; Dedekind domain; perfect ring},
language = {eng},
number = {2},
pages = {367-377},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularly weakly based modules over right perfect rings and Dedekind domains},
url = {http://eudml.org/doc/288203},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Hrbek, Michal
AU - Růžička, Pavel
TI - Regularly weakly based modules over right perfect rings and Dedekind domains
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 367
EP - 377
AB - A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.
LA - eng
KW - weak basis; regularly weakly based ring; Dedekind domain; perfect ring
UR - http://eudml.org/doc/288203
ER -
References
top- Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13, Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9
- Berrick, A. J., Keating, M. E., An Introduction to Rings and Modules with -Theory in View, Cambridge Studies in Advanced Mathematics 65, Cambridge University Press, Cambridge (2000). (2000) Zbl0949.16001MR1757884
- Dlab, V., 10.1112/jlms/s1-36.1.139, J. Lond. Math. Soc. 36 (1961), 139-144. (1961) Zbl0104.02601MR0123604DOI10.1112/jlms/s1-36.1.139
- Herden, D., Hrbek, M., Růžička, P., 10.1016/j.laa.2016.03.001, Linear Algebra Appl. 501 (2016), 98-111. (2016) Zbl1338.15004MR3485061DOI10.1016/j.laa.2016.03.001
- Hrbek, M., Růžička, P., 10.1016/j.jalgebra.2013.09.031, J. Algebra 399 (2014), 251-268. (2014) Zbl1308.13013MR3144587DOI10.1016/j.jalgebra.2013.09.031
- Hrbek, M., Růžička, P., 10.2989/16073606.2014.981704, Quaest. Math. 38 (2015), 103-120. (2015) MR3334638DOI10.2989/16073606.2014.981704
- Kaplansky, I., Infinite Abelian Groups, University of Michigan Publications in Mathematics 2, University of Michigan Press, Ann Arbor (1954). (1954) Zbl0057.01901MR0065561
- Krylov, P. A., Tuganbaev, A. A., 10.1515/9783110205787, De Gruyter Expositions in Mathematics 43, Walter de Gruyter, Berlin (2008). (2008) Zbl1144.13001MR2387130DOI10.1515/9783110205787
- Nashier, B., Nichols, W., 10.1007/BF02568380, Manuscr. Math. 70 (1991), 307-310. (1991) Zbl0721.16009MR1089066DOI10.1007/BF02568380
- Neggers, J., Cyclic rings, Rev. Un. Mat. Argentina 28 (1977), 108-114. (1977) Zbl0371.16011MR0463238
- Passman, D. S., A Course in Ring Theory, Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1991). (1991) Zbl0783.16001MR1096302
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.