Heavy Subgraphs, Stability and Hamiltonicity

Binlong Li; Bo Ning

Discussiones Mathematicae Graph Theory (2017)

  • Volume: 37, Issue: 3, page 691-710
  • ISSN: 2083-5892

Abstract

top
Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique C of G′, every non-trivial component of G′ − C contains a vertex of degree at least |V (G)|/2 in G. Our original motivation is a theorem of Hu from 1999 that can be stated, in terms of this concept, as every 2-connected 2-heavy and N-c-heavy graph is hamiltonian, where N is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs S such that every 2-connected o-heavy and S-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu’s theorem. Furthermore, our main result improves or extends several previous results.

How to cite

top

Binlong Li, and Bo Ning. "Heavy Subgraphs, Stability and Hamiltonicity." Discussiones Mathematicae Graph Theory 37.3 (2017): 691-710. <http://eudml.org/doc/288479>.

@article{BinlongLi2017,
abstract = {Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique C of G′, every non-trivial component of G′ − C contains a vertex of degree at least |V (G)|/2 in G. Our original motivation is a theorem of Hu from 1999 that can be stated, in terms of this concept, as every 2-connected 2-heavy and N-c-heavy graph is hamiltonian, where N is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs S such that every 2-connected o-heavy and S-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu’s theorem. Furthermore, our main result improves or extends several previous results.},
author = {Binlong Li, Bo Ning},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {heavy subgraphs; hamiltonian graphs; closure theory},
language = {eng},
number = {3},
pages = {691-710},
title = {Heavy Subgraphs, Stability and Hamiltonicity},
url = {http://eudml.org/doc/288479},
volume = {37},
year = {2017},
}

TY - JOUR
AU - Binlong Li
AU - Bo Ning
TI - Heavy Subgraphs, Stability and Hamiltonicity
JO - Discussiones Mathematicae Graph Theory
PY - 2017
VL - 37
IS - 3
SP - 691
EP - 710
AB - Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique C of G′, every non-trivial component of G′ − C contains a vertex of degree at least |V (G)|/2 in G. Our original motivation is a theorem of Hu from 1999 that can be stated, in terms of this concept, as every 2-connected 2-heavy and N-c-heavy graph is hamiltonian, where N is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs S such that every 2-connected o-heavy and S-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu’s theorem. Furthermore, our main result improves or extends several previous results.
LA - eng
KW - heavy subgraphs; hamiltonian graphs; closure theory
UR - http://eudml.org/doc/288479
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.