General operators binding variables in the interpreted modal calculus 𝒞 ν

Aldo Bressan; Alberto Zanardo

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1981)

  • Volume: 70, Issue: 4, page 191-197
  • ISSN: 0392-7881

How to cite

top

Bressan, Aldo, and Zanardo, Alberto. "General operators binding variables in the interpreted modal calculus $\mathcal{MC}^{\nu}$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 70.4 (1981): 191-197. <http://eudml.org/doc/288685>.

@article{Bressan1981,
author = {Bressan, Aldo, Zanardo, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {4},
number = {4},
pages = {191-197},
publisher = {Accademia Nazionale dei Lincei},
title = {General operators binding variables in the interpreted modal calculus $\mathcal\{MC\}^\{\nu\}$},
url = {http://eudml.org/doc/288685},
volume = {70},
year = {1981},
}

TY - JOUR
AU - Bressan, Aldo
AU - Zanardo, Alberto
TI - General operators binding variables in the interpreted modal calculus $\mathcal{MC}^{\nu}$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1981/4//
PB - Accademia Nazionale dei Lincei
VL - 70
IS - 4
SP - 191
EP - 197
LA - eng
UR - http://eudml.org/doc/288685
ER -

References

top
  1. Bonotto, C. and Bressan, A. - On a synonimy relation for extensional first order theories, to be printed on «Rend. Sem. Mat. Univ.», Padova. 
  2. Bressan, A. (1972) - A General Interpreted Modal Calculus, New Haven, Yale University Press. 
  3. Bressan, A. (1974) - On the usefulness of modal logic in axiomatization of physics, in K.F. Schaffner and R.S. Cohen (eds), «Proceedings of the 1972 Biennal Meeting of the Phisolophy of Science Association», Reidel, Dordrecht, pp. 285-303. 
  4. Bressan, A. (1978) - Sul calcolo modale interpretato M C ν , in C. Pizzi (ed) «Leggi di natura, modalità, ipotesi. La logica del ragionamento controfattuale», Feltrinelli, Milano, pp. 303-329. 
  5. Bressan, A. (1981) - Extension of the modal calculi M C ν and M C . Comparison of them with similar calculi endowed with different semantics. Application to probability theory, in U. Moennich (ed), «Aspects of Philosophical Logic. Some Logical Forays into Central Notions of Linguistics and Philosophy», Reidel, Dordrecht, pp. 21-66. Zbl0476.03028
  6. Bressan, A. - On general operators binding variables in an extensional first order theory. To be printed. 
  7. Corcoran, J. and Herring, J. (1971) - Notes on a semantical analysis of variable binding term operators, «Logique et Analyse», 55, 644-567, Zbl0239.02007
  8. Corcoran, J., Hatcher, W.S. and Herring, J. (1972) - Variable binding term operators, «Zeitschr. f. math. Logik u. Grund, d. Math.», 18, 177-182. Zbl0257.02013
  9. Da Costa, N.C.A. (1980) — A model-theoretical approach to variable binding term operators, in A.I. Arruda, R. Chuaqui, N.C.A. Da Costa (eds), «Mathematical Logic in Latin America», North-Holland Publishing Company, pp. 133-162. 
  10. Henkin, L. (1950) - Completeness in the theory of types, «Journal of Symbolic Logic», 15, 81-91. 
  11. Parks, Z. (1976) — Investigations into quantified modal logic — I, «Studia Logica», 35, 109-125. Zbl0332.02028
  12. Zanardo, A. (1981) - A Completeness Theorem for the General Interpreted Modal Calculus M C ν of A. Bressan, «Rend. Sem. Mat. Univ.», Padova, 64, 39-57. Zbl0484.03006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.