A completeness theorem for the general interpreted modal calculus M C v of A. Bressan

Alberto Zanardo

Rendiconti del Seminario Matematico della Università di Padova (1981)

  • Volume: 64, page 39-57
  • ISSN: 0041-8994

How to cite

top

Zanardo, Alberto. "A completeness theorem for the general interpreted modal calculus $MC^v$ of A. Bressan." Rendiconti del Seminario Matematico della Università di Padova 64 (1981): 39-57. <http://eudml.org/doc/107801>.

@article{Zanardo1981,
author = {Zanardo, Alberto},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {modal logic; type-theoretical modal calculus; interpretations; contingent theories},
language = {eng},
pages = {39-57},
publisher = {Seminario Matematico of the University of Padua},
title = {A completeness theorem for the general interpreted modal calculus $MC^v$ of A. Bressan},
url = {http://eudml.org/doc/107801},
volume = {64},
year = {1981},
}

TY - JOUR
AU - Zanardo, Alberto
TI - A completeness theorem for the general interpreted modal calculus $MC^v$ of A. Bressan
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1981
PB - Seminario Matematico of the University of Padua
VL - 64
SP - 39
EP - 57
LA - eng
KW - modal logic; type-theoretical modal calculus; interpretations; contingent theories
UR - http://eudml.org/doc/107801
ER -

References

top
  1. [1] A. Bressan, A General Interpreted Modal Calculus, New Haven, Yale University Press, 1972. Zbl0255.02015MR401432
  2. [2] A. Bressan, On the usefulness of modal logic in axiomatizations of physics, Conference at PSA meeting in Lansing (September 1972), PSA 1972, pp. 285-303. Zbl0322.02014
  3. [3] A. Bressan, On the semantics for the language MLv based on a type system, and those for the type-free language ML∞, Journal of Philosophical Logic, 3 (1974), pp. 171-194. Zbl0285.02019
  4. [4] A. Bressan, Extension of the modal calculi MCv and MC∞. Comparison of them with similar calculi endowed with different semantics. Application to probability theory, to be printed in the Proceedings of the workshop on modal logic held in Tübingen, Dec. 1977. Zbl0476.03028
  5. [5] A. Church, A formulation of the simple theory of types, Journal of Symbolic Logic, 5 (1940), pp. 56-68. Zbl0023.28901MR1931JFM66.1192.06
  6. [6] L. Henkin, The completeness of the first-order functional calculus, Journal of Symbolic Logic, 14 (1949), pp. 159-166. Zbl0034.00602MR33781
  7. [7] L. Henkin, Completeness in the theory of types, Journal of Symbolic Logic, 15 (1950), pp. 81-91. Zbl0039.00801MR36188
  8. [8] L. Henkin, A generalization of the concept of ω-completeness, Journal of Symbolic Logic, 22 (1957), pp. 1-14. Zbl0081.01201
  9. [9] G.E. Hughes - M.J. Cresswell, An Introduction to Modal Logic, London, Methuen and Co., Ltd., 1968. Zbl0205.00503MR439586
  10. [10] E.G. Omodeo, The elimination of descriptions from A. Bressan's modal language ML'' on which the logical calculus MCv is based, Rend. Sem. Mat. Univ. Padova, 56 (1977), pp. 269-292. Zbl0383.03013MR491034
  11. [11] Z. Parks, Investigations into quantified modal logic - I, Studia Logica, 35 (1976), pp. 109-125. Zbl0332.02028MR437311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.