Permutability of centre-by-finite groups
- Volume: 83, Issue: 1, page 153-158
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topPiochi, Brunetto. "Permutability of centre-by-finite groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 83.1 (1989): 153-158. <http://eudml.org/doc/289079>.
@article{Piochi1989,
abstract = {Let $G$ be a group and $m$ be an integer greater than or equal to $2$. $G$ is said to be $m$-permutable if every product of $m$ elements can be reordered at least in one way. We prove that, if $G$ has a centre of finite index $z$, then $G$ is $(1 + [z/2])$-permutable. More bounds are given on the least $m$ such that $G$ is $m$-permutable.},
author = {Piochi, Brunetto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Centre-by-Finite Groups; Rewritable groups; Permutability},
language = {eng},
month = {12},
number = {1},
pages = {153-158},
publisher = {Accademia Nazionale dei Lincei},
title = {Permutability of centre-by-finite groups},
url = {http://eudml.org/doc/289079},
volume = {83},
year = {1989},
}
TY - JOUR
AU - Piochi, Brunetto
TI - Permutability of centre-by-finite groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 153
EP - 158
AB - Let $G$ be a group and $m$ be an integer greater than or equal to $2$. $G$ is said to be $m$-permutable if every product of $m$ elements can be reordered at least in one way. We prove that, if $G$ has a centre of finite index $z$, then $G$ is $(1 + [z/2])$-permutable. More bounds are given on the least $m$ such that $G$ is $m$-permutable.
LA - eng
KW - Centre-by-Finite Groups; Rewritable groups; Permutability
UR - http://eudml.org/doc/289079
ER -
References
top- CURZIO, M., 1985. Sul problema di Burnside. Quad. Ist. Mat. Appi. Univ. L'Aquila, 8: 1-24.
- CURZIO, M., LONGOBARDI, P. and MAJ, M., 1983. Su di un problema combinatorio in Teoria dei Gruppi. Atti Acc. Lincei Rend. fis., VIII, 74: 136-142. Zbl0528.20031
- CURZIO, M., LONGOBARDI, P., MAY, M. and ROBINSON, D.J.S., 1985. A permutational property of groups. Arch. Math., 44: 385-389. Zbl0544.20036MR792360DOI10.1007/BF01229319
- GARZON, M. and ZALCSTEIN, Y., 1987. On permutation properties in groups and semigroups. Semigroup Forum, 35: 337-351. Zbl0623.20040MR900108DOI10.1007/BF02573115
- PIOCHI, B. and PIRILLO, G., 1988. Sur une propriété combinatone des groupes finis. C.R. Acad. Sci. Paris, 307, I: 115-117. Zbl0647.20032MR954272
- RESTTVO, A. and REUTENAUER, C., 1984. On the Burnside problem for semigroups. J. Algebra, 89; 102-104. Zbl0545.20051MR748230DOI10.1016/0021-8693(84)90237-0
- SUZUKI, M., 1982. Group Theory I. Springer Verlag, Berlin. MR648772
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.