Breathers for nonlinear wave equations
- Volume: 82, Issue: 3, page 431-435
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topSmiley, Michael W.. "Breathers for nonlinear wave equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.3 (1988): 431-435. <http://eudml.org/doc/289089>.
@article{Smiley1988,
abstract = {The semilinear differential equation (1), (2), (3), in $\mathbb\{R\} \times \Omega$ with $\Omega \in \mathbb\{R\}^\{N\}$, (a nonlinear wave equation) is studied. In particular for $\Omega = \mathbb\{R\}^\{3\}$, the existence is shown of a weak solution $u(t,x)$, periodic with period $T$, non-constant with respect to $t$, and radially symmetric in the spatial variables, that is of the form $u(t,x) = \nu(t,|x|)$. The proof is based on a distributional interpretation for a linear equation corresponding to the given problem, on the Paley-Wiener criterion for the Laplace Transform, and on the alternative method of Cesari.},
author = {Smiley, Michael W.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Periodicity; Breathers; Distributional solution; Weighted Hilbert space; Method of alternative problems},
language = {eng},
month = {9},
number = {3},
pages = {431-435},
publisher = {Accademia Nazionale dei Lincei},
title = {Breathers for nonlinear wave equations},
url = {http://eudml.org/doc/289089},
volume = {82},
year = {1988},
}
TY - JOUR
AU - Smiley, Michael W.
TI - Breathers for nonlinear wave equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/9//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 3
SP - 431
EP - 435
AB - The semilinear differential equation (1), (2), (3), in $\mathbb{R} \times \Omega$ with $\Omega \in \mathbb{R}^{N}$, (a nonlinear wave equation) is studied. In particular for $\Omega = \mathbb{R}^{3}$, the existence is shown of a weak solution $u(t,x)$, periodic with period $T$, non-constant with respect to $t$, and radially symmetric in the spatial variables, that is of the form $u(t,x) = \nu(t,|x|)$. The proof is based on a distributional interpretation for a linear equation corresponding to the given problem, on the Paley-Wiener criterion for the Laplace Transform, and on the alternative method of Cesari.
LA - eng
KW - Periodicity; Breathers; Distributional solution; Weighted Hilbert space; Method of alternative problems
UR - http://eudml.org/doc/289089
ER -
References
top- CESARI, L., Functional analysis, nonlinear differential equations, and the alternative method, in «Non-linear Functional Analysis and Differential Equations», ( Cesari, , Kannan, Schuur, eds.), Marcel Dekker, New York, 1976, pp. 1-197. Zbl0343.47038MR487630
- CORON, J.M., Période minimale pour une corde vibrante de longueur infinite, C.R. Acad. Sci. Paris Ser. A.294 (1982), 127-129. Zbl0942.35512MR651803
- LEVINE, H.A., Minimal periods for solutions of semilinear wave equations in exterior domains and for solutions of the equations of nonlinear elasticity, J. of Math. Anal. and Appl. (to appear). Zbl0676.35063MR960819DOI10.1016/0022-247X(88)90155-2
- PALEY, R., WIENER, N., Fourier Transforms in the Complex Domain. «A.M.S. Colloquium Publications», Vol. 19, Providence, R.I., 1934. Zbl0011.01601
- SMILEY, M.W., Eigenfunction methods and nonlinear hyperbolic boundary value problems at resonance, J. of Math. Anal. and Appl.122 no. 1 (1987), 129-151. Zbl0624.35015MR874965DOI10.1016/0022-247X(87)90350-7
- SMILEY, M.W., Time-periodic solutions of wave equations on and , Math. Meth. in Appl. Sci. (to appear) 3. Zbl0669.35059MR909918
- SMILEY, M.W., Breathers and forced oscillations of nonlinear wave equations on , (submitted to), J. für die reine und angewandte Mathematik. Zbl0666.35066
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.