Wiener criterion for degenerate elliptic obstacle problem

Marco Biroli; Umberto Mosco

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1989)

  • Volume: 83, Issue: 1, page 63-67
  • ISSN: 0392-7881

Abstract

top
We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the A 2 class.

How to cite

top

Biroli, Marco, and Mosco, Umberto. "Wiener criterion for degenerate elliptic obstacle problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 83.1 (1989): 63-67. <http://eudml.org/doc/289209>.

@article{Biroli1989,
abstract = {We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the $A_\{2\}$ class.},
author = {Biroli, Marco, Mosco, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Variational inequalities; Potential theory; Regularity of weak solutions},
language = {eng},
month = {12},
number = {1},
pages = {63-67},
publisher = {Accademia Nazionale dei Lincei},
title = {Wiener criterion for degenerate elliptic obstacle problem},
url = {http://eudml.org/doc/289209},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Biroli, Marco
AU - Mosco, Umberto
TI - Wiener criterion for degenerate elliptic obstacle problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 63
EP - 67
AB - We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the $A_{2}$ class.
LA - eng
KW - Variational inequalities; Potential theory; Regularity of weak solutions
UR - http://eudml.org/doc/289209
ER -

References

top
  1. BIROLI, M. and MARCHI, S., 1986. Wiener estimates at boundary points for degenerate elliptic equations. Boll. U.M.I., 6, 5(B): 689-706; Correction, 1988, Boll. U.M.I., 2-B, 7: 713. Zbl0634.35034
  2. BIROLI, M. and MARCHI, S., 1989. Wiener estimates for degenerate elliptic equations II. Diff. Int. Eq., 2, 4: 511-523. Zbl0733.35045MR996757
  3. FABES, E., JERISON, D.S. and KENIG, C., 1982. The Wiener test for degenerate elliptic equations. Ann. Inst. Fourier, 3: 151-183. Zbl0488.35034MR688024
  4. FABES, E., KENIG, C. and SERAPIONI, R., 1982. The local regularity of solutions of degenerate elliptic equations. Comm. in PDE, 7, 1: 77-116. Zbl0498.35042MR643158DOI10.1080/03605308208820218
  5. FREHSE, J. and MOSCO, U., 1985. Wiener obstacles. In «Seminar on nonlinear partial differential equation», College de France, ed. by BREZIS H. and LIONS J.L., VI, Pitman. Zbl0583.35038
  6. LITTMAN, W., STAMPACCHIA, G. and WEINBERGER, H., 1963. Regular points for elliptc equations with discontinuous coefficients. Ann. Sc. Norm. Sup. Pisa, 17: 47-77. Zbl0116.30302MR161019
  7. MOSCO, U., 1987. Wiener criterion and potential estimates for the obstacle problem. Indiana Un. Math. J., 36: 455-494. Zbl0644.49005MR905606DOI10.1512/iumj.1987.36.36026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.