Displaying similar documents to “Wiener criterion for degenerate elliptic obstacle problem”

Wiener criterion for degenerate elliptic obstacle problem

Marco Biroli, Umberto Mosco (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the A 2 class.

A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces

Akihito Unai (2018)

Applications of Mathematics

Similarity:

We shall prove a weak comparison principle for quasilinear elliptic operators - div ( a ( x , u ) ) that includes the negative p -Laplace operator, where a : Ω × N N satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.

C 1 , α regularity for elliptic equations with the general nonstandard growth conditions

Sungchol Kim, Dukman Ri (2024)

Mathematica Bohemica

Similarity:

We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on Ω . We prove the global C 1 , α regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the C 1 , α regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.

Convex integration and the L p theory of elliptic equations

Kari Astala, Daniel Faraco, László Székelyhidi Jr. (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

This paper deals with the L p theory of linear elliptic partial differential equations with bounded measurable coefficients. We construct in two dimensions examples of weak and so-called very weak solutions, with critical integrability properties, both to isotropic equations and to equations in non-divergence form. These examples show that the general L p theory, developed in [1, 24] and [2], cannot be extended under any restriction on the essential range of the coefficients. Our constructions...

Existence of a renormalized solution of nonlinear degenerate elliptic problems

Youssef Akdim, Chakir Allalou (2014)

Applicationes Mathematicae

Similarity:

We study a general class of nonlinear elliptic problems associated with the differential inclusion β ( u ) - d i v ( a ( x , D u ) + F ( u ) ) f in Ω where f L ( Ω ) . The vector field a(·,·) is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in function spaces we prove existence of renormalized solutions for general L -data.

Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

Fonctions biharmoniques adjointes

Emmanuel P. Smyrnelis (2010)

Annales Polonici Mathematici

Similarity:

The study of the equation (L₂L₁)*h = 0 or of the equivalent system L*₂h₂ = -h₁, L*₁h₁ = 0, where L j ( j = 1 , 2 ) is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions (u₁,u₂) of the system L₁u₁ = -u₂, L₂u₂ = 0, L j ( j = 1 , 2 ) being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.

Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition

Zonghu Xiu, Caisheng Chen (2013)

Annales Polonici Mathematici

Similarity:

We consider the existence and nonexistence of solutions for the following singular quasi-linear elliptic problem with concave and convex nonlinearities: ⎧ - d i v ( | x | - a p | u | p - 2 u ) + h ( x ) | u | p - 2 u = g ( x ) | u | r - 2 u , x ∈ Ω, ⎨ ⎩ | x | - a p | u | p - 2 u / ν = λ f ( x ) | u | q - 2 u , x ∈ ∂Ω, where Ω is an exterior domain in N , that is, Ω = N D , where D is a bounded domain in N with smooth boundary ∂D(=∂Ω), and 0 ∈ Ω. Here λ > 0, 0 ≤ a < (N-p)/p, 1 < p< N, ∂/∂ν is the outward normal derivative on ∂Ω. By the variational method, we prove the existence of multiple solutions. By the test function...

T-p(x)-solutions for nonlinear elliptic equations with an L¹-dual datum

El Houssine Azroul, Abdelkrim Barbara, Meryem El Lekhlifi, Mohamed Rhoudaf (2012)

Applicationes Mathematicae

Similarity:

We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem - d i v ( a ( x , u , u ) ) + g ( x , u ) = f - d i v F in Ω, where Ω is a bounded open domain of N , N ≥ 2 and a : Ω × × N N is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to i = 1 N L p ' ( · ) ( Ω ) .

Analytic semigroups generated on a functional extrapolation space by variational elliptic equations

Vincenzo Vespri (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We prove that any elliptic operator of second order in variational form is the infinitesimal generator of an analytic semigroup in the functional space C - 1 , α ( Ω ) consinsting of all derivatives of hölder-continuous functions in Ω where Ω is a domain in n not necessarily bounded. We characterize, moreover the domain of the operator and the interpolation spaces between this and the space C - 1 , α ( Ω ) . We prove also that the spaces C - 1 , α ( Ω ) can be considered as extrapolation spaces relative to suitable non-variational...

Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions

Honghui Yin, Zuodong Yang (2011)

Annales Polonici Mathematici

Similarity:

Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ - Δ p u + | u | p - 2 u = f 1 λ ( x ) | u | q - 2 u + 2 α / ( α + β ) g μ | u | α - 2 u | v | β , x ∈ Ω, ⎨ - Δ p v + | v | p - 2 v = f 2 λ ( x ) | v | q - 2 v + 2 β / ( α + β ) g μ | u | α | v | β - 2 v , x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and Ω N is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and f i λ i ( x ) = λ i f i + ( x ) + f i - ( x ) (i = 1,2) are sign-changing functions, where f i ± ( x ) = m a x ± f i ( x ) , 0 , g μ ( x ) = a ( x ) + μ b ( x ) , and Δ p u = d i v ( | u | p - 2 u ) denotes the p-Laplace operator. We use variational methods.

Existence of positive radial solutions for the elliptic equations on an exterior domain

Yongxiang Li, Huanhuan Zhang (2016)

Annales Polonici Mathematici

Similarity:

We discuss the existence of positive radial solutions of the semilinear elliptic equation ⎧-Δu = K(|x|)f(u), x ∈ Ω ⎨αu + β ∂u/∂n = 0, x ∈ ∂Ω, ⎩ l i m | x | u ( x ) = 0 , where Ω = x N : | x | > r , N ≥ 3, K: [r₀,∞) → ℝ⁺ is continuous and 0 < r r K ( r ) d r < , f ∈ C(ℝ⁺,ℝ⁺), f(0) = 0. Under the conditions related to the asymptotic behaviour of f(u)/u at 0 and infinity, the existence of positive radial solutions is obtained. Our conditions are more precise and weaker than the superlinear or sublinear growth conditions. Our discussion is based on the...

Existence of weak solutions for elliptic Dirichlet problems with variable exponent

Sungchol Kim, Dukman Ri (2023)

Mathematica Bohemica

Similarity:

This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type - div a ( x , u , u ) + b ( x , u , u ) = 0 in Ω , u = 0 on Ω , where Ω is a bounded domain of n , n 2 . In particular, we do not require strict monotonicity of the principal part a ( x , z , · ) , while the approach is based on the variational method and results of the variable exponent function spaces.

A Littlewood-Paley type inequality with applications to the elliptic Dirichlet problem

Caroline Sweezy (2007)

Annales Polonici Mathematici

Similarity:

Let L be a strictly elliptic second order operator on a bounded domain Ω ⊂ ℝⁿ. Let u be a solution to L u = d i v f in Ω, u = 0 on ∂Ω. Sufficient conditions on two measures, μ and ν defined on Ω, are established which imply that the L q ( Ω , d μ ) norm of |∇u| is dominated by the L p ( Ω , d v ) norms of d i v f and | f | . If we replace |∇u| by a local Hölder norm of u, the conditions on μ and ν can be significantly weaker.

Quasilinear elliptic equations with discontinuous coefficients

Lucio Boccardo, Giuseppe Buttazzo (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We prove an existence result for equations of the form { - D i ( a i j ( x , u ) D j u ) = f in Ω u H 0 1 ( Ω ) . where the coefficients a i j ( x , s ) satisfy the usual ellipticity conditions and hypotheses weaker than the continuity with respect to the variable s . Moreover, we give a counterexample which shows that the problem above may have no solution if the coefficients a i j ( x , s ) are supposed only Borel functions

Existence and nonexistence of solutions for a quasilinear elliptic system

Qin Li, Zuodong Yang (2015)

Annales Polonici Mathematici

Similarity:

By a sub-super solution argument, we study the existence of positive solutions for the system ⎧ - Δ p u = a ( x ) F ( x , u , v ) in Ω, ⎪ - Δ q v = a ( x ) F ( x , u , v ) in Ω, ⎨u,v > 0 in Ω, ⎩u = v = 0 on ∂Ω, where Ω is a bounded domain in N with smooth boundary or Ω = N . A nonexistence result is obtained for radially symmetric solutions.

Solutions to a class of singular quasilinear elliptic equations

Lin Wei, Zuodong Yang (2010)

Annales Polonici Mathematici

Similarity:

We study the existence of positive solutions to ⎧ d i v ( | u | p - 2 u ) + q ( x ) u - γ = 0 on Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω is N or an unbounded domain, q(x) is locally Hölder continuous on Ω and p > 1, γ > -(p-1).

On the average value of the canonical height in higher dimensional families of elliptic curves

Wei Pin Wong (2014)

Acta Arithmetica

Similarity:

Given an elliptic curve E over a function field K = ℚ(T₁,...,Tₙ), we study the behavior of the canonical height h ̂ E ω of the specialized elliptic curve E ω with respect to the height of ω ∈ ℚⁿ. We prove that there exists a uniform nonzero lower bound for the average of the quotient ( h ̂ E ω ( P ω ) ) / h ( ω ) over all nontorsion P ∈ E(K).

Partially elliptic differential equations having distributions as their right members

H. Marcinkowska

Similarity:

ContentsIntroduction.............................................................................................................................31. Definitions, notations and some auxiliary lemmas...................................................42. The definition of the spaces H p , q ; Y ( Ω , ) ..........................................................73. Some properties of the spaces H p , q ; Y ( Ω , ) ...................................................104. Some examples of the spaces H p , q ; Y ( Ω , ) ....................................................155....

A bound for the solutions of a basic elliptic system with non-linearity q 2

Sergio Campanato (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In questa Nota si dimostra un risultato enunciato nel § 5 della pubblicazione [4]. Per le soluzioni di un sistema ellittico base, con non-linearità q 2 , vale un principio di massimo analogo a quello dimostrato in [3] nel caso di non-linearità q = 2 .

A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients

Carmela Vitanza, Pietro Zamboni (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this note we obtain the existence and the uniqueness of the solution of a variational inequality associated to the degenerate operator L u = - i , j = 1 n ( a i j ( x ) u x i + d j u ) x j + i = 1 n b i u x i + c u assuming the coefficients of the lower terms and the known term belonging to a suitable degenerate Stummel-Kato class. The weight w , which gives the degeneration, belongs to the Muckenoupt class A 2 .

Analytic semigroups generated on a functional extrapolation space by variational elliptic equations

Vincenzo Vespri (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We prove that any elliptic operator of second order in variational form is the infinitesimal generator of an analytic semigroup in the functional space C - 1 , α ( Ω ) consinsting of all derivatives of hölder-continuous functions in Ω where Ω is a domain in n not necessarily bounded. We characterize, moreover the domain of the operator and the interpolation spaces between this and the space C - 1 , α ( Ω ) . We prove also that the spaces C - 1 , α ( Ω ) can be considered as extrapolation spaces relative to suitable non-variational...