A uniqueness theorem for viscous flows on exterior domains with summability assumptions on the gradient of pressure.
Giovanni P. Galdi; Paolo Maremonti
- Volume: 76, Issue: 1, page 28-32
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topGaldi, Giovanni P., and Maremonti, Paolo. "A uniqueness theorem for viscous flows on exterior domains with summability assumptions on the gradient of pressure.." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 76.1 (1984): 28-32. <http://eudml.org/doc/289215>.
@article{Galdi1984,
author = {Galdi, Giovanni P., Maremonti, Paolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {1},
number = {1},
pages = {28-32},
publisher = {Accademia Nazionale dei Lincei},
title = {A uniqueness theorem for viscous flows on exterior domains with summability assumptions on the gradient of pressure.},
url = {http://eudml.org/doc/289215},
volume = {76},
year = {1984},
}
TY - JOUR
AU - Galdi, Giovanni P.
AU - Maremonti, Paolo
TI - A uniqueness theorem for viscous flows on exterior domains with summability assumptions on the gradient of pressure.
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1984/1//
PB - Accademia Nazionale dei Lincei
VL - 76
IS - 1
SP - 28
EP - 32
LA - eng
UR - http://eudml.org/doc/289215
ER -
References
top- BOGOVSKII, M.E. (1980) - On the -theory of the Navier-Stokes system for unbounded domains with non compact boudaries, «Soviet Math. Doklady», 22, 809-814.
- CANNON, J.R. and KNIGHTLY, G.H. (1970) - Some continuous dependence theorems for viscous fluid motions, «SIAM J. Appl. Math.», 18, 627-640.
- EDMUNDS, E. (1963) — On the uniqueness of viscous flows, «Arch. Rational Mech. Anal.», 14, 171-176.
- FABRIZIO, M. (1979) — Problemi di unicità per le equazioni di Navier-Stokes in domini non limitati, «Arch. Rational Mech. Anal.», 68, 171-178.
- GALDI, G.P. and MAREMONTI, P. - A Uniqueness Theorem for Viscous Fluid Motions in Exterior Domains, «Arch. Rational Mech. Anal.», to appear.
- GALDI, G.P. and RIONERO, S. (1976) - A uniqueness theorem for hydrodinamic flows in unbounded domains, «Ann. Mat. Pura App.», 108, 361-366 (1976).
- GALDI, G.P. and RIONERO, S. (1976) - On the uniqueness of viscous fluid motions, «Arch. Rational Mech. Anal.», 62, 295-301.
- GALDI, G.P. and RIONERO, S. (1979) - The weight function approach to uniqueness of
- GALDI, G.P. and RIONERO, S. (1979) - Continuous dependence theorems for Navier-Stokes equations in unbounded domains by the weight function method, « Q. Jl. Mech. Appl. Math.», 32, 149-161.
- GALDI, G.P. and RIONERO, S. (1979) - A priori estimates, continuous dependence and stability for solutions to Navier-Stokes equations on exterior domains, «Riv. Mat. Univ. Parma», 5, 533-566.
- GALDI, G.P. and RIONERO, S. (1983) - On the best counditions on the gradient of pressure for uniqueness of viscous flows in the whole space, «Pacific J. Math.», 104, 77-83.
- GALDI, G.P. and RIONERO, S. (1983) - Local estimates and stability of viscous flows in exterior domains, «Arch. Rational Mech. Anal.», 81, 333-347.
- GRAFFI, D. (1960) - Sul teorema di unicità nella dinamica dei fluidi, «Ann. Mat. Pura App.», 50, 379-388.
- LADYZHENSKAYA, O.A., SOLONNIKOV, V. A. and URAL'TSEVA, N.N. (1968) - Linear and quasi-linear equations of parabolic type, «American Math. Soc. Providence».
- MURATORI, P. (1971) - Teoremi di unicità per un problema relativo alle equazioni di Navier-Stokes, «Boll. U.M.I.», 4, 592-613.
- SOLONNIKOV, V.A. (1977) - Estimates for solutions of non stationary Navier-Stokes, «J. Soviet Math.», 8, 467-529.
- STRAUGHAN, B. (1977) — Uniqueness and continuous dependence theorems for the conduction-diffusion solution to the Boussinesq equations on an exterior domain, «J. Math. Anal. App.», 57, 203-234.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.