Harmonie reflections
Lieven Vanhecke; Maria-Elena Vazquez-Abal
- Volume: 82, Issue: 2, page 229-236
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topVanhecke, Lieven, and Vazquez-Abal, Maria-Elena. "Harmonie reflections." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.2 (1988): 229-236. <http://eudml.org/doc/289229>.
@article{Vanhecke1988,
abstract = {We study local reflections $\phi_\{\sigma\}$ with respect to a curve $\sigma$ in a Riemannian manifold and prove that $\sigma$ is a geodesic if $\phi_\{\sigma\}$ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if $\phi_\{\sigma\}$ is harmonic for all geodesies $\sigma$.},
author = {Vanhecke, Lieven, Vazquez-Abal, Maria-Elena},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Harmonic maps; Reflections with respect to a curve; Harmonic reflections},
language = {eng},
month = {6},
number = {2},
pages = {229-236},
publisher = {Accademia Nazionale dei Lincei},
title = {Harmonie reflections},
url = {http://eudml.org/doc/289229},
volume = {82},
year = {1988},
}
TY - JOUR
AU - Vanhecke, Lieven
AU - Vazquez-Abal, Maria-Elena
TI - Harmonie reflections
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/6//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 2
SP - 229
EP - 236
AB - We study local reflections $\phi_{\sigma}$ with respect to a curve $\sigma$ in a Riemannian manifold and prove that $\sigma$ is a geodesic if $\phi_{\sigma}$ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if $\phi_{\sigma}$ is harmonic for all geodesies $\sigma$.
LA - eng
KW - Harmonic maps; Reflections with respect to a curve; Harmonic reflections
UR - http://eudml.org/doc/289229
ER -
References
top- CARTAN, E., Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946. Zbl0060.38101MR20842
- CHEN, B.Y., Geometry of submanifolds, Pure and Applied Mathematics, 22, Marcel Dekker, New York, 1973. Zbl0262.53036MR353212
- DODSON, C.T.J., VANHECKE, L. and VAZQUEZ-ABAL, M.E., Harmonic geodesic symmetries, «C.R. Math Rep. Acad. Sci. Canada» 9 (1987), 231-235. Zbl0631.53013MR910160
- EELLS, J. and SAMPSON, J.H., Harmonic mappings of Riemannian manifolds, «Amer. J. Math.» 86 (1984), 109-160. Zbl0122.40102MR164306
- EELLS, J. and LEMAIRE, L., A report on harmonic maps, «Bull. London Math. Soc.» 10 (1978), 1-68. Zbl0401.58003MR495450DOI10.1112/blms/10.1.1
- GHEYSENS, L., Riemannse differentiaalmeetkunde van buisvormige omgevingen, doctoral dissertation, Katholieke Universiteit Leuven, 1981.
- GRAY, A. and VANHECKE, L., The volumes of tubes about curves in a Riemannian manifold, «Proc. London Math. Soc.» 44 (1982), 215-243. Zbl0491.53035MR647431DOI10.1112/plms/s3-44.2.215
- TONDEUR, P.H. and VANHECKE, L., Reflections in submanifolds, to appear in «Geometricae Dedicata». Zbl0656.53055MR965832DOI10.1007/BF00147801
- VANHECKE, L. and WILLMORE, T.J., Interaction of tubes ad spheres, «Math. Ann.» 263 (1983), 31-42. Zbl0491.53034MR697328DOI10.1007/BF01457081
- VANHECKE, L., Geometry and symmetry, Proc. Workshop on Advances in Differential Geometry and Topology, Torino1987, to appear. Zbl0766.53043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.