Harmonie reflections

Lieven Vanhecke; Maria-Elena Vazquez-Abal

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1988)

  • Volume: 82, Issue: 2, page 229-236
  • ISSN: 0392-7881

Abstract

top
We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

How to cite

top

Vanhecke, Lieven, and Vazquez-Abal, Maria-Elena. "Harmonie reflections." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.2 (1988): 229-236. <http://eudml.org/doc/289229>.

@article{Vanhecke1988,
abstract = {We study local reflections $\phi_\{\sigma\}$ with respect to a curve $\sigma$ in a Riemannian manifold and prove that $\sigma$ is a geodesic if $\phi_\{\sigma\}$ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if $\phi_\{\sigma\}$ is harmonic for all geodesies $\sigma$.},
author = {Vanhecke, Lieven, Vazquez-Abal, Maria-Elena},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Harmonic maps; Reflections with respect to a curve; Harmonic reflections},
language = {eng},
month = {6},
number = {2},
pages = {229-236},
publisher = {Accademia Nazionale dei Lincei},
title = {Harmonie reflections},
url = {http://eudml.org/doc/289229},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Vanhecke, Lieven
AU - Vazquez-Abal, Maria-Elena
TI - Harmonie reflections
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/6//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 2
SP - 229
EP - 236
AB - We study local reflections $\phi_{\sigma}$ with respect to a curve $\sigma$ in a Riemannian manifold and prove that $\sigma$ is a geodesic if $\phi_{\sigma}$ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if $\phi_{\sigma}$ is harmonic for all geodesies $\sigma$.
LA - eng
KW - Harmonic maps; Reflections with respect to a curve; Harmonic reflections
UR - http://eudml.org/doc/289229
ER -

References

top
  1. CARTAN, E., Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946. Zbl0060.38101MR20842
  2. CHEN, B.Y., Geometry of submanifolds, Pure and Applied Mathematics, 22, Marcel Dekker, New York, 1973. Zbl0262.53036MR353212
  3. DODSON, C.T.J., VANHECKE, L. and VAZQUEZ-ABAL, M.E., Harmonic geodesic symmetries, «C.R. Math Rep. Acad. Sci. Canada» 9 (1987), 231-235. Zbl0631.53013MR910160
  4. EELLS, J. and SAMPSON, J.H., Harmonic mappings of Riemannian manifolds, «Amer. J. Math.» 86 (1984), 109-160. Zbl0122.40102MR164306
  5. EELLS, J. and LEMAIRE, L., A report on harmonic maps, «Bull. London Math. Soc.» 10 (1978), 1-68. Zbl0401.58003MR495450DOI10.1112/blms/10.1.1
  6. GHEYSENS, L., Riemannse differentiaalmeetkunde van buisvormige omgevingen, doctoral dissertation, Katholieke Universiteit Leuven, 1981. 
  7. GRAY, A. and VANHECKE, L., The volumes of tubes about curves in a Riemannian manifold, «Proc. London Math. Soc.» 44 (1982), 215-243. Zbl0491.53035MR647431DOI10.1112/plms/s3-44.2.215
  8. TONDEUR, P.H. and VANHECKE, L., Reflections in submanifolds, to appear in «Geometricae Dedicata». Zbl0656.53055MR965832DOI10.1007/BF00147801
  9. VANHECKE, L. and WILLMORE, T.J., Interaction of tubes ad spheres, «Math. Ann.» 263 (1983), 31-42. Zbl0491.53034MR697328DOI10.1007/BF01457081
  10. VANHECKE, L., Geometry and symmetry, Proc. Workshop on Advances in Differential Geometry and Topology, Torino1987, to appear. Zbl0766.53043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.