A uniqueness criterion for the solution of the stationary Navier-Stokes equations
- Volume: 83, Issue: 1, page 43-49
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topProuse, Giovanni. "A uniqueness criterion for the solution of the stationary Navier-Stokes equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 83.1 (1989): 43-49. <http://eudml.org/doc/289272>.
@article{Prouse1989,
abstract = {A uniqueness criterion is given for the weak solution of the Navier-Stokes equations in the stationary case. Precisely, it is proved that, for a generic known term, there exists one and only one solution such that the mechanical power of the corresponding flow is maximum and that this maximum is "stable" in an appropriate sense.},
author = {Prouse, Giovanni},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Fluid dynamics; Weak solution; Analytic function},
language = {eng},
month = {12},
number = {1},
pages = {43-49},
publisher = {Accademia Nazionale dei Lincei},
title = {A uniqueness criterion for the solution of the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/289272},
volume = {83},
year = {1989},
}
TY - JOUR
AU - Prouse, Giovanni
TI - A uniqueness criterion for the solution of the stationary Navier-Stokes equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 43
EP - 49
AB - A uniqueness criterion is given for the weak solution of the Navier-Stokes equations in the stationary case. Precisely, it is proved that, for a generic known term, there exists one and only one solution such that the mechanical power of the corresponding flow is maximum and that this maximum is "stable" in an appropriate sense.
LA - eng
KW - Fluid dynamics; Weak solution; Analytic function
UR - http://eudml.org/doc/289272
ER -
References
top- TEMAM, R., 1984. Navier-Stokes equations. North Holland; LADYZHENSKAJA, O.A., 1969. The mathematical theory of viscous, incompressible flow. Gordon and Breach. MR254401
- LIONS, J.L., 1958. Espaces intermédiaires entre espaces de Hilbert et applications. Bull. Math. R.P.R. Bucarest. 4. Zbl0097.09501MR151829
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.