Stime di decadimento spaziali per alcune classi di continui

Ermanna Piras

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-A, Issue: 3-1, page 613-616
  • ISSN: 0392-4033

How to cite

top

Piras, Ermanna. "Stime di decadimento spaziali per alcune classi di continui." Bollettino dell'Unione Matematica Italiana 8-A.3-1 (2005): 613-616. <http://eudml.org/doc/289437>.

@article{Piras2005,
author = {Piras, Ermanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3-1},
pages = {613-616},
publisher = {Unione Matematica Italiana},
title = {Stime di decadimento spaziali per alcune classi di continui},
url = {http://eudml.org/doc/289437},
volume = {8-A},
year = {2005},
}

TY - JOUR
AU - Piras, Ermanna
TI - Stime di decadimento spaziali per alcune classi di continui
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/12//
PB - Unione Matematica Italiana
VL - 8-A
IS - 3-1
SP - 613
EP - 616
LA - ita
UR - http://eudml.org/doc/289437
ER -

References

top
  1. BORRELLI, A., PATRIA, M. C., Spatial energy estimates in dynamical problems for a semi-infinite piezoelectric beam, IMA J. Appl. Math., 64 (2000), 73-93. Zbl0987.74027MR1752988DOI10.1093/imamat/64.1.73
  2. CHIRITA, S., CIARLETTA, M., FABRIZIO, M., Saint Venant's Principle in Linear Viscoelasticity, Int. J. Engng Sci., 35 (1997), 1221-1236. Zbl0917.73028MR1488530DOI10.1016/S0020-7225(97)00028-1
  3. CHIRITA, S., QUINTANILLA, R., On Saint Venant's Principle in Linear Elastodynamics, J. Elast., 42 (1996), 201-215. Zbl0891.73010MR1398131DOI10.1007/BF00041790
  4. DE CICCO, S., NAPPA, L., On Saint Venant principle for Micropolar Viscoelastic bodies, Int. J. Engng Sci., 37 (1999), 883-893. Zbl1210.74079MR1684516DOI10.1016/S0020-7225(98)00103-7
  5. DUVAUT, G., LIONS, J. L., Les inéqualions en mécanique et en physique, Dunod, Paris (1972). Zbl0298.73001MR464857
  6. ERINGEN, A. C., Linear theory of Micropolar Viscoelasticity, Int. J. Engng. Sci., 5 (1967), 191-204 Zbl0146.21502
  7. ERINGEN, A. C., Theory of Micropolar fluids, J. of Math. Mech., 16 (1966), 1-18. MR204005
  8. FABRIZIO, M., GIORGI, C., MORRO, A., Internal dissipation, Relaxation property and Free Energy in materials with fading memory, J. of Elasticity40 (1995), 107-122. Zbl0853.73024MR1364749DOI10.1007/BF00042457
  9. FASANO A. Editor, Complex flow in industrial processes, Birkhauser (2000). MR1741071DOI10.1007/978-1-4612-1348-2
  10. FLAVIN, J. N., KNOPS, R. J., PAYNE, L. E., Energy bounds in dynamical problems for a semi-infinite elastic beam, Elasticity: Math Methods and Applications, Eds. G. Eason e R. W. Hogden, Ellis Horwood, Cichester (1990), 101-111. Zbl0736.73035MR770388

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.