Geometria delle superfici in certi spazi omogenei tridimensionali
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-A, Issue: 2, page 267-270
- ISSN: 0392-4041
Access Full Article
topHow to cite
topOnnis, Irene Iganzia. "Geometria delle superfici in certi spazi omogenei tridimensionali." Bollettino dell'Unione Matematica Italiana 9-A.2 (2006): 267-270. <http://eudml.org/doc/289575>.
@article{Onnis2006,
author = {Onnis, Irene Iganzia},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {8},
number = {2},
pages = {267-270},
publisher = {Unione Matematica Italiana},
title = {Geometria delle superfici in certi spazi omogenei tridimensionali},
url = {http://eudml.org/doc/289575},
volume = {9-A},
year = {2006},
}
TY - JOUR
AU - Onnis, Irene Iganzia
TI - Geometria delle superfici in certi spazi omogenei tridimensionali
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/8//
PB - Unione Matematica Italiana
VL - 9-A
IS - 2
SP - 267
EP - 270
LA - ita
UR - http://eudml.org/doc/289575
ER -
References
top- BACK, A., DO CARMO, M.P. e HSIANG, W.Y., On the fundamental equations of equivariant geometry, (unpublished manuscript). Zbl1205.53033
- CADDEO, R., PIU, P. e RATTO, A., Rotational surfaces in with constant Gauss curvature, Boll. Un. Mat. Ital., B (7) (1996), 341-357. Zbl0849.53004
- MERCURI F, MONTALDO, S. e PIU, P., Weierstrass representation formulae of minimal surfaces in and , Acta Math. Sinica, to appear. Zbl1119.53041
- MONTALDO, S. e ONNIS, I.I., Invariant CMC surfaces in , Glasg. Math. J., 46 (2004), 311-321. Zbl1055.53045
- MONTALDO, S. e ONNIS, I.I., Invariant surfaces in a three-manifold with constant Gaussian curvature, J. Geom. Phys., 55 (4) (2005), 440-449. Zbl1084.53055
- MONTALDO, S. e ONNIS, I.I., Invariant surfaces in with constant (Gauss or mean) curvature, Publ. de la RSME, 9 (2005), 91-103.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.