A Note on Surfaces in 2 ×

Stefano Montaldo; Irene I. Onnis

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 939-950
  • ISSN: 0392-4033

Abstract

top
In this article we consider surfaces in the product space 2 × of the hyperbolic plane 2 with the real line. The main results are: a description of some geometric properties of minimal graphs; new examples of complete minimal graphs; the local classification of totally umbilical surfaces.

How to cite

top

Montaldo, Stefano, and Onnis, Irene I.. "A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 939-950. <http://eudml.org/doc/290411>.

@article{Montaldo2007,
abstract = {In this article we consider surfaces in the product space $\mathbb\{H\}^2 \times \mathbb\{R\}$ of the hyperbolic plane $\mathbb\{H\}^2$ with the real line. The main results are: a description of some geometric properties of minimal graphs; new examples of complete minimal graphs; the local classification of totally umbilical surfaces.},
author = {Montaldo, Stefano, Onnis, Irene I.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {939-950},
publisher = {Unione Matematica Italiana},
title = {A Note on Surfaces in $\mathbb\{H\}^2 \times \mathbb\{R\}$},
url = {http://eudml.org/doc/290411},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Montaldo, Stefano
AU - Onnis, Irene I.
TI - A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 939
EP - 950
AB - In this article we consider surfaces in the product space $\mathbb{H}^2 \times \mathbb{R}$ of the hyperbolic plane $\mathbb{H}^2$ with the real line. The main results are: a description of some geometric properties of minimal graphs; new examples of complete minimal graphs; the local classification of totally umbilical surfaces.
LA - eng
UR - http://eudml.org/doc/290411
ER -

References

top
  1. ABRESCH, U. - ROSENBERG, H., A Hopf differential for constant mean curvature surfaces in 𝕊 2 × and 2 × , Acta Math., 193 (2004), 141-174. MR2134864DOI10.1007/BF02392562
  2. CADDEO, R. - PIU, P. - RATTO, A., SO(2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Manuscripta Math., 87 (1995), 1-12. Zbl0827.53009MR1329436DOI10.1007/BF02570457
  3. DAJCZER, M., Submanifolds and isometric immersions, Mathematics Lecture Series, 13. Publish or Perish, Houston, 1990. MR1075013
  4. EELLS, J. - SAMPSON, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. Zbl0122.40102MR164306DOI10.2307/2373037
  5. FERNANDEZ, I. - MIRA, P., Harmonic maps and constant mean curvature surfaces in 2 × , arXiv:math.DG/0507386. MR2343386DOI10.1353/ajm.2007.0023
  6. MONTALDO, S. - ONNIS, I. I., Invariant CMC surfaces in 2 × , Glasg. Math. J., 46 (2004), 311-321. Zbl1055.53045MR2062613DOI10.1017/S001708950400179X
  7. MONTALDO, S. - ONNIS, I. I., Invariant surfaces in 2 × with constant (Gauss or mean) curvature, Publ. de la RSME, 9 (2005), 91-103. 
  8. MEEKS III, W. - ROSENBERG, H., The theory of minimal surfaces in M × , Comment. Math. Helv., 80 (2005), 811-858. Zbl1085.53049MR2182702DOI10.4171/CMH/36
  9. NELLI, B. - ROSENBERG, H., Minimal surfaces in 2 × R , Bull Braz. Math. Soc., 33 (2002), 263-292. MR1940353DOI10.1007/s005740200013
  10. NELLI, B. - ROSENBERG, H., Global properties of constant mean curvature surfaces in 2 × , Pacific J. Math., to appear. MR2247859DOI10.2140/pjm.2006.226.137
  11. ONNIS, I. I., Superfícies em certos espaços homogêneos tridimensionais, Ph.D. Thesis, University of Campinas (2005), available online at http://libdigi.unicamp.br/document/?code=vtls000364041. 
  12. ONNIS, I. I., Geometria delle superfici in certi spazi omogenei tridimensionali, Boll. Un. Mat. Ital. A (8) 9 (2006), 267-270. 
  13. OSSERMAN, R., Minimal surfaces in 3 , Global differential geometry, MAA Stud. Math., 27, Math. Assoc. America, Washington, DC, (1989), 73-98. MR1013809
  14. ROSENBERG, H., Minimal surfaces in M × , Illinois Jour. Math., 46 (2002), 1177-1195. Zbl1036.53008MR1988257
  15. SAÂ EARP, R. - TOUBIANA, E., Screw motion surfaces in 2 × and 𝕊 2 × , Illinois J. Math., 49 (2005), 1323-1362. Zbl1093.53068MR2210365

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.