Questo numero è primo? Sì, forse, dipende ...
Luisella Caire; Umberto Cerruti
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-A, Issue: 3-1, page 449-481
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCaire, Luisella, and Cerruti, Umberto. " Questo numero è primo? Sì, forse, dipende ...." Bollettino dell'Unione Matematica Italiana 9-A.3-1 (2006): 449-481. <http://eudml.org/doc/289587>.
@article{Caire2006,
abstract = {In this paper we outline some algorithms answering the question if a given number is prime: primally criteria, that are deterministic (they positively reply yes or not) and unconditional, but inefficient (technically not polynomial-time); algoritms that are efficient, but only probabilistic (to say they give absolute certainty if they answer not, whereas they only give a low boundary of the probability for the number to be prime if they answer yes); algorithms that are the same time deterministic and efficient, but conditioned, that is they depend on the extended Riemann conjecture(yet to be proved).},
author = {Caire, Luisella, Cerruti, Umberto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3-1},
pages = {449-481},
publisher = {Unione Matematica Italiana},
title = { Questo numero è primo? Sì, forse, dipende ...},
url = {http://eudml.org/doc/289587},
volume = {9-A},
year = {2006},
}
TY - JOUR
AU - Caire, Luisella
AU - Cerruti, Umberto
TI - Questo numero è primo? Sì, forse, dipende ...
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/12//
PB - Unione Matematica Italiana
VL - 9-A
IS - 3-1
SP - 449
EP - 481
AB - In this paper we outline some algorithms answering the question if a given number is prime: primally criteria, that are deterministic (they positively reply yes or not) and unconditional, but inefficient (technically not polynomial-time); algoritms that are efficient, but only probabilistic (to say they give absolute certainty if they answer not, whereas they only give a low boundary of the probability for the number to be prime if they answer yes); algorithms that are the same time deterministic and efficient, but conditioned, that is they depend on the extended Riemann conjecture(yet to be proved).
LA - ita
UR - http://eudml.org/doc/289587
ER -
References
top- ADLEMAN, L. M. - POMERANCE, C. - RUMELY, R. S., On distinguishing prime numbers from composite numbers, Annals of Mathematics, 117 (1983), 173-206. Zbl0526.10004
- AGADZHANOV, A. N., Unusual infinity of prime numbers, URL: http://citeseer.ifi.unizh.ch/agadzhanov01unusual.html, 2001
- AGRAWAL, M. - KAYAL, N. - SAXENA, N., PRIMES is in P, Annals of Mathematics, 160 (2004), 781-793. MR2123939DOI10.4007/annals.2004.160.781
- ALFORD, W. R. - GRANVILLE, A. - POMERANCE, C., There are infinitely many Carmichael numbers, Annals of Mathematics, 139 (1994), 703-722. Zbl0816.11005MR1283874DOI10.2307/2118576
- BAILLIE, R. - WAGSTAFF, S. S., Lucas pseudoprimes, Mathematics of Computation, 35 (1980), 1391-1417. MR583518DOI10.2307/2006406
- BERNSTEIN, D. J., Distinguishing prime numbers from composite numbers: the state of the art in 2004, URL: http://cr.yp.to/papers.html#prime2004 (2004).
- BRILLHART, J. - LEHMER, D. H. - SELFRIDGE, J. L., New Primality Criteria and Factorizations for , Mathematics of Computations, 29 (1975), 620-647. Zbl0311.10009MR384673DOI10.2307/2005583
- CRANDALL, R. - POMERANCE, C., Prime Numbers: a computational perspective, Springer-Verlag, 2002. Zbl0995.11072MR1821158DOI10.1007/978-1-4684-9316-0
- GOLDWASSER, S. - KILIAN, J., Primality Testing using Elliptic Curves, Journal of the ACM, 46 (1999), 450-472. Zbl1064.11503MR1812127DOI10.1145/320211.320213
- LANGUASCO, A. - ZACCAGNINI, A., Introduzione alla Crittografia, Hoepli Editore, Milano, 2004.
- LEMMERMEYER, F., Reciprocity Laws: From Euler to Eisenstein, Springer, 2000. MR1761696DOI10.1007/978-3-662-12893-0
- LUCAS, E., Sur la recherche des grands nombres premiers, Association Française pour l'Avancement des Sciences, Comptes Rendus, 5 (1876), 61-68.
- MILLER, G. L., Riemann's Hypothesis and tests for Primality, J. of Comp. Sys. Sci.13 (1976), 300-317. Zbl0349.68025MR480295DOI10.1016/S0022-0000(76)80043-8
- MÜLLER, S., On the combined Fermat/Lucas probable prime test, in Crypto and Coding '99, Lecture Notes in Computer Science1746, Springer-Verlag1999, 222-235. Zbl1017.11068MR1861844DOI10.1007/3-540-46665-7_26
- POCKLINGTON, H. C., Determination of the prime or composite nature of large numbers by Fermat's theorem, Proceedings of the Cambridge Philosophical Society, 18 (1914), 29-30.
- POMERANCE, C., Primality testing: variations on a theme of Lucas, in corso di pubblicazione su Proceedings of MSRI Workshop, J. Buhler and P. Stevenhagen, eds. 2005, URL: http://cm.bell-labs.com/cm/ms/who/carlp/primalitytalk5.ps
- RABIN, M. O., Probabilistic Algorithms, in 'Algorithms and Complexity: new directions and recent results', J. F. Traub Edt., Academic Press, 1976, 21-39. MR464678
- RABIN, M. O., Probabilistic Algorithms for Testing Primality, Journal of Number Theory, 12 (1980), 128-138. Zbl0426.10006MR566880DOI10.1016/0022-314X(80)90084-0
- RIBENBOIM, P., The Book of Prime Numbers Records, Springer-Verlag, 1988. Zbl0642.10001MR931080DOI10.1007/978-1-4684-9938-4
- SOLOWAY, R. M. - STRASSEN, V., A fast Montecarlo test for primality, SIAM Journal on Computing, 6 (1977), 84-85. Zbl0345.10002MR429721DOI10.1137/0206006
- YAN, S. Y., Primality testing of large numbers in Maple, Computers and Mathematics with Applications, 12 (1995), 1-8. Zbl0847.11062MR1329593DOI10.1016/0898-1221(95)00052-Z
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.