[unknown]

Wadie Aziz; José A. Guerrero; L. Antonio Azócar; Nelson Merentes

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2016)

  • Volume: 36, Issue: 2, page 207-229
  • ISSN: 1509-9407

Abstract

top
In this paper we study existence and uniqueness of solutions for the Hammerstein equation u ( x ) = v ( x ) + λ I a b K ( x , y ) f ( y , u ( y ) ) d y in the space of function of bounded total ϕ -variation in the sense of Hardy-Vitali-Tonelli, where λ , K : I a b × I a b and f : I a b × are suitable functions. The existence and uniqueness of solutions are proved by means of the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle.

How to cite

top

Wadie Aziz, et al. "null." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 36.2 (2016): 207-229. <http://eudml.org/doc/289597>.

@article{WadieAziz2016,
abstract = {In this paper we study existence and uniqueness of solutions for the Hammerstein equation \[ u(x)= v(x) + \lambda \int \_\{I\_\{a\}^\{b\}\}K(x,y)f(y,u(y))dy \] in the space of function of bounded total $\varphi $-variation in the sense of Hardy-Vitali-Tonelli, where $\lambda \in \mathbb \{R\}$, $K:I_a^b\times I_a^b \longrightarrow \mathbb \{R\}$ and $f:I_a^b\times \mathbb \{R\} \longrightarrow \mathbb \{R\}$ are suitable functions. The existence and uniqueness of solutions are proved by means of the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle.},
author = {Wadie Aziz, José A. Guerrero, L. Antonio Azócar, Nelson Merentes},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Hammerstein integral equation; Banach spaces; bounded $\varphi $-variation in the sense of Hardy-Vitali-Tonelli; Banach's contraction principle; Leray-Schauder nonlinear alternative principle},
language = {eng},
number = {2},
pages = {207-229},
url = {http://eudml.org/doc/289597},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Wadie Aziz
AU - José A. Guerrero
AU - L. Antonio Azócar
AU - Nelson Merentes
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2016
VL - 36
IS - 2
SP - 207
EP - 229
AB - In this paper we study existence and uniqueness of solutions for the Hammerstein equation \[ u(x)= v(x) + \lambda \int _{I_{a}^{b}}K(x,y)f(y,u(y))dy \] in the space of function of bounded total $\varphi $-variation in the sense of Hardy-Vitali-Tonelli, where $\lambda \in \mathbb {R}$, $K:I_a^b\times I_a^b \longrightarrow \mathbb {R}$ and $f:I_a^b\times \mathbb {R} \longrightarrow \mathbb {R}$ are suitable functions. The existence and uniqueness of solutions are proved by means of the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle.
LA - eng
KW - Hammerstein integral equation; Banach spaces; bounded $\varphi $-variation in the sense of Hardy-Vitali-Tonelli; Banach's contraction principle; Leray-Schauder nonlinear alternative principle
UR - http://eudml.org/doc/289597
ER -

References

top
  1. [1] A. Alexiewicz, Functional Analysis (PWN 49, Warsaw, 1969). 
  2. [2] J. Appell and C.-J. Chen, How to solve Hammerstein equations, J. Int. Equ. Appl 18 (2006), 287-296. doi: 10.1216/jiea/1181075392 
  3. [3] R.P. Agarwal, D. O'Regan and P.J. Wong, Positive solutions of differential, difference and integral equations (Kluwer Academic Publishers , Dordrecht, 1999). doi: 10.1007/978-94-015-9171-3 
  4. [4] W. Aziz, H. Leiva and N. Merentes, Solutions of Hammerstein equations in the space B V ( I a b ) , Quaestiones Mathematicae 37 (2014), 1-12. doi: 10.2989/16073606.2014.894675 
  5. [5] L.A. Azocar, H. Leiva, J. Matute and N. Merentes, On the Hammerstein equation in the space of functions of bounded ϕ -variation in the plane, Archivum Mathematicum (Brno) 49 (2013), 51-64. doi: 10.5817/AM2013-1-51 
  6. [6] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. 46 (1989), 61-68. doi: 10.1017/S1446788700030378 
  7. [7] J. Banaś and Z. Knap, Integrable solutions of a functional-integral equation, Revista Matemática de la Universidad Complutense de Madrid2 (1989), 31-38.  
  8. [8] D. Bugajewska, D. Bugajewski and H. Hudzik, On B V φ -solutions of some nonlinear integral equations, J. Math. Anal. Appl.287 (2003), 265-278. doi: 10.1016/S0022-247X(03)00550-X  
  9. [9] D. Bugajewska, D. Bugajewski and G. Lewicki, On nonlinear integral equations in the space of functions of bounded generalized φ -variation, J. Int. Equ. Appl.21 (2009), 1-20. doi: 10.1216/JIE-2009-21-1-1  
  10. [10] D. Bugajewska and D. O’Regan, On nonlinear integral equations and Γ -bounded variation, Acta Math. Hungar.107 (2005), 295-306. doi: 10.1007/s10474-005-0197-8  
  11. [11] T.A. Burton, Volterra Integral and Differential Equations (Academic Press, New York, 1983). 
  12. [12] V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (2004), 1-82. doi: 10.1515/JAA.2004.1 
  13. [13] C. Corduneanu, Integral Equations and Applications (Cambridge University Press, New York, 1973). 
  14. [14] J. Diestel, Sequences and Series in Banach Spaces ({Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984). doi: 10.1007/978-1-4612-5200-9 
  15. [15] G. Emmanuele, About the existence of integrable solutions of a functional-integral equation, Revista de Matemática de la Universidad Complutense de Madrid 4 (1991), 65-69. doi: 10.5209/rev_rema.1991.v4.n1.18000 
  16. [16] G. Emmanuele, Integrable solutions of a functional-integral equation, J. Int. Equ. Appl. 4 (1992), 89-94. doi: 10.1216/jiea/1181075668 
  17. [17] J.A. Guerrero, Extensión a 2 de la Noción de Función de Variación Acotada en el Sentido Hardy-Vitali-Wiener, Ph.D. Thesis,Universidad Central de Venezuela, Facultad de Ciencias, Postgrado de Matematica, Caracas - Venezuela, 2010, in Spanish. 
  18. [18] G.H. Hardy, On double {Fourier} series, and especially those which represent the double zeta-function with real and incommesurable parameters, Q.J. Math. Oxford 37 (1905), 53-79. 
  19. [19] C. Jordan, Sur la série de Fourier, C.R. Acad. Sci. 92 (1881), 228-230. 
  20. [20] H. Leiva, J. Matute and N. Merentes, On the Hammerstein-Volterra equation in the space of the absolutely continuous functions, I.J. Math. Anal. 6 (2012), 2977-2999. 
  21. [21] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. (1034) (Springer-Verlag, 1983). 
  22. [22] B.G. Pachpatte, Applications of the Leray-Schauder alternative to some Volterra integral and integro-diferential equations, Indian J. Pure Appl. Math. 26 (1995), 1161-1168. 
  23. [23] B.G. Pachpatte, Multidimensional Integral Equations and Inequalities, Atlantis Studies in Mathematics for Engineering and Science (Atlantis Press, 2011). 
  24. [24] D. O'Regan, Fixed point theorems for nonlinear operators, JMAA 212 (1996), 413-432. doi: 10.1006/jmaa.1996.0324 
  25. [25] D. O'Regan, Existence theory for nonlinear Volterra integro-differential and integral equations, Nonlinear Anal. 31 (1998), 317-341. doi: 10.1016/S0362-546X(96)00313-6 
  26. [26] R. Precup, Theorems of Leray-Schauder Type and Application (Gordon and Breach Science Publishers, 2001). 
  27. [27] Š. Schwabik, M. Tvrdý and O. Vejvoda, Differential and integral equations, Boundary value problems and adjoints, Academia Praha and Reidel D. (1979), 239-246. 
  28. [28] L. Tonelli, Sulle funzioni di due variabili generalmente a variazione limitata, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1936), 315-320. 
  29. [29] G. Vitali, Sulle funzione integrali, Atti Accad. Sci. Torino CI Sci Fis Mat Natur 40 (1904/1905) 1021-1034 and (1984) Opere sull'analisi teale Cremonese 205-220. 
  30. [30] L.C. Young, Sur une généralisation de la notion de variation de puissance pieme borneé au sens de N. Wiener et sur la convergence des séries de Fourier, C.R. Acad. Sci. Paris Sér. A 204 (1937), 470-472. 
  31. [31] P.P. Zabrejko, A.I. Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovschik and V.J. Stetsenko, Integral Equations (Noordhoff, Leyden, 1975). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.