On the Hammerstein equation in the space of functions of bounded -variation in the plane
Luis Azócar; Hugo Leiva; Jesús Matute; Nelson Merentes
Archivum Mathematicum (2013)
- Volume: 049, Issue: 1, page 51-64
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAzócar, Luis, et al. "On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane." Archivum Mathematicum 049.1 (2013): 51-64. <http://eudml.org/doc/252518>.
@article{Azócar2013,
abstract = {In this paper we study existence and uniqueness of solutions for the Hammerstein equation
\[ u(x) = v(x) + \lambda \int \_\{I\_\{a\}^\{b\}\} K(x,y) f\big (y,u(y)\big )\, dy\,, \quad x \in I\_\{a\}^\{b\} := [a\_\{1\},b\_\{1\}] \times [a\_\{2\},b\_\{2\}]\,, \]
in the space $BV_\{\varphi \}^\{\mathbb \{R\}\}(I_\{a\}^\{b\})$ of function of bounded total $\varphi -$variation in the sense of Riesz, where $ \lambda \in \mathbb \{R\} $, $ K \colon I_\{a\}^\{b\} \times I_\{a\}^\{b\} \rightarrow \mathbb \{R\} $ and $ f\colon I_\{a\}^\{b\} \times \mathbb \{R\} \rightarrow \mathbb \{R\}$ are suitable functions.},
author = {Azócar, Luis, Leiva, Hugo, Matute, Jesús, Merentes, Nelson},
journal = {Archivum Mathematicum},
keywords = {existence and uniqueness of solutions of the Hammerstein integral equation in the plane; $\varphi $-bounded total variation norm on a rectangle; existence; uniqueness; Hammerstein integral equation in the plane; -bounded total variation norm on a rectangle; nonlinear Leray-Schauder type alternative},
language = {eng},
number = {1},
pages = {51-64},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane},
url = {http://eudml.org/doc/252518},
volume = {049},
year = {2013},
}
TY - JOUR
AU - Azócar, Luis
AU - Leiva, Hugo
AU - Matute, Jesús
AU - Merentes, Nelson
TI - On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 1
SP - 51
EP - 64
AB - In this paper we study existence and uniqueness of solutions for the Hammerstein equation
\[ u(x) = v(x) + \lambda \int _{I_{a}^{b}} K(x,y) f\big (y,u(y)\big )\, dy\,, \quad x \in I_{a}^{b} := [a_{1},b_{1}] \times [a_{2},b_{2}]\,, \]
in the space $BV_{\varphi }^{\mathbb {R}}(I_{a}^{b})$ of function of bounded total $\varphi -$variation in the sense of Riesz, where $ \lambda \in \mathbb {R} $, $ K \colon I_{a}^{b} \times I_{a}^{b} \rightarrow \mathbb {R} $ and $ f\colon I_{a}^{b} \times \mathbb {R} \rightarrow \mathbb {R}$ are suitable functions.
LA - eng
KW - existence and uniqueness of solutions of the Hammerstein integral equation in the plane; $\varphi $-bounded total variation norm on a rectangle; existence; uniqueness; Hammerstein integral equation in the plane; -bounded total variation norm on a rectangle; nonlinear Leray-Schauder type alternative
UR - http://eudml.org/doc/252518
ER -
References
top- Azis, W., Leiva, H., Merentes, N., Sánchez, J. L., Functions of two variables with bounded –variation in the sense of Riesz, J. Math. Appl. 32 (2010), 5–23. (2010) MR2664252
- Aziz, W. A., Algunas Extensiones a de la Noción de Funciones con –Variación Acotada en el Sentido de Riesz y Controlabilidad de las RNC, Ph.D. thesis, Universidad Central de Venezuela, Facultad de Ciencias, Postgrado de Matemática, Caracas, 2009, in Spanish. (2009)
- Bugajeswska, D., Bugajewski, D., Hudzik, H., 10.1016/S0022-247X(03)00550-X, J. Math. Anal. Appl. 287 (2003), 265–278. (2003) MR2010270DOI10.1016/S0022-247X(03)00550-X
- Bugajewska, D., 10.1016/j.mcm.2010.05.008, Math. Comput. Modelling 52 (2010), 791–796. (2010) Zbl1202.45005MR2661764DOI10.1016/j.mcm.2010.05.008
- Bugajewska, D., O ' Regan, D., 10.1007/s10474-005-0197-8, gan, D., On nonlinear integral equations and –bounded variation, Acta Math. Hungar. 107 (4) (2005), 295–306. (2005) Zbl1085.45005MR2150792DOI10.1007/s10474-005-0197-8
- Bugajewski, D., 10.1007/s00020-001-1146-8, Integral Equations Operator Theory 46 (2003), 387–398. (2003) Zbl1033.45002MR1997978DOI10.1007/s00020-001-1146-8
- Pachpatte, B. G., Multidimensional Integral Equations and Inequalities, Atlantis Studies in Mathematics for Engineering and Science, Atlantis Press, 2011. (2011) Zbl1232.45001MR2882942
- Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and integral equations. Boundary value problems and adjoints, D. Reidel Publishing Co., Dordrecht–Boston, Mass.–London, 1979. (1979) Zbl0417.45001MR0542283
- Vaz, P. T., Deo, S. G., 10.1155/S104895339000017X, J. Appl. Math. Stochastic Anal. 3 (1990) 3 (3) (1990), 177–191. (1990) MR1070899DOI10.1155/S104895339000017X
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.