Diophantine Equations in Low Dimensions

Enrico Bombieri

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2000)

  • Volume: 11, Issue: S1, page 11-29
  • ISSN: 1120-6330

Abstract

top
This lecture is a survey of recent results in the theory of diophantine equations, especially for dimension 1. The unit equation and its generalizations are examined in detail, as well as Baker's theory and the consequences of the abc-conjecture.

How to cite

top

Bombieri, Enrico. "Diophantine Equations in Low Dimensions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.S1 (2000): 11-29. <http://eudml.org/doc/289685>.

@article{Bombieri2000,
abstract = {This lecture is a survey of recent results in the theory of diophantine equations, especially for dimension 1. The unit equation and its generalizations are examined in detail, as well as Baker's theory and the consequences of the abc-conjecture.},
author = {Bombieri, Enrico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
language = {eng},
month = {12},
number = {S1},
pages = {11-29},
publisher = {Accademia Nazionale dei Lincei},
title = {Diophantine Equations in Low Dimensions},
url = {http://eudml.org/doc/289685},
volume = {11},
year = {2000},
}

TY - JOUR
AU - Bombieri, Enrico
TI - Diophantine Equations in Low Dimensions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/12//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - S1
SP - 11
EP - 29
AB - This lecture is a survey of recent results in the theory of diophantine equations, especially for dimension 1. The unit equation and its generalizations are examined in detail, as well as Baker's theory and the consequences of the abc-conjecture.
LA - eng
UR - http://eudml.org/doc/289685
ER -

References

top
  1. BAKER, A., Linear forms in the logarithms of algebraic numbers I. Mathematika, 13, 1966, 204-216. Zbl0161.05201MR258756DOI10.1112/S0025579300002588
  2. BAKER, A. - WÜSTHOLZ, G., Logarithmic forms and group varieties. J. reine angew. Math., 442, 1993, 19-62. Zbl0788.11026MR1234835DOI10.1515/crll.1993.442.19
  3. BELYI, G.V., On the Galois extensions of the maximal cyclotomic field. Izv. Akad. Nauk SSSR, 1979, 267-276 (in Russian). Zbl0409.12012MR534593
  4. BEUKERS, F. - SCHLICKEWEI, H.P., The equation x + y = 1 in finitely generated groups. Acta Arithm., 78, 1996, 189-199. Zbl0880.11034MR1424539DOI10.4064/aa-78-2-189-199
  5. Yu. BILU, Limit distribution of small points on algebraic tori. Duke Math. J., 89, 1997, 465-476. Zbl0918.11035MR1470340DOI10.1215/S0012-7094-97-08921-3
  6. BOMBIERI, E., Effective diophantine approximation on 𝔾 m . Ann. Sc. Norm. Sup. Pisa Cl. Sc., s. 4, 20, 1993,61-89. Zbl0774.11034MR1215999
  7. BOMBIERI, E. - COHEN, P. B., Effective diophantine approximation on 𝔾 m II. Ann. Sc. Norm. Sup. Pisa Cl. Sc., s. 4, 24, 1997, 205-225. Zbl0912.11028MR1487954
  8. BOMBIERI, E. - ZANNIER, U., Algebraic points on subvarieties of 𝔾 m n . Int. Math. Res. Notices, 7, 1995, 333-347. Zbl0848.11030MR1350686DOI10.1155/S1073792895000250
  9. ELKIES, N. D., ABC implies Mordell. Int. Math. Res. Notices, 1, 1991, 127-132. MR1141316DOI10.1155/S1073792891000144
  10. J.- EVERTSE, H. - SCHLICKEWEI, H. P. - SCHMIDT, W.M., Linear equations in variables which lie in a multiplicative group. Annals of Math., submitted. Zbl1026.11038MR1923966DOI10.2307/3062133
  11. FALTINGS, G., Diophantine approximation an Abelian varieties. Annals of Math., 133, 1991, 549-576. Zbl0734.14007MR1109353DOI10.2307/2944319
  12. FELDMAN, N. I., An effective refinement of the exponent in Liouville's theorem. Izv. Akad. Nauk SSSR, 35, 1971, 973-990; Math. USSR Izv., 5, 1971, 985-1002. MR289418
  13. GRANVILLE, A., ABC allows us to count squarefrees. Int. Math. Res. Notices, 19, 1998, 991-1009. Zbl0924.11018MR1654759DOI10.1155/S1073792898000592
  14. LANGEVIN, M., Sur quelques conséquences de la conjecture (abc) en arithmétique et logique (Symposium on Diophantine Problems, Boulder, Co., 1994). Rocky Mountain J. Math., 26, 1996, 1031-1042. MR1428484DOI10.1216/rmjm/1181072035
  15. RÉMOND, G., Décompte dans une conjecture de Lang. Inventiònes Math., to appear. MR1804159DOI10.1007/s002220000095
  16. STOTHERS, W. W., Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford, s. (2), 32, 1981, 349-370. Zbl0466.12011MR625647DOI10.1093/qmath/32.3.349
  17. SZPIRO, L. - ULLMO, E. - ZHANG, S., Equidistribution des petits points. Inventiones Math., 127, 1997, 337-347. Zbl0991.11035MR1427622DOI10.1007/s002220050123
  18. TAYLOR, R. - WILES, A., Ring-theoretic properties of certain Hecke algebras. Annals of Math., 142, 1995, 553-572. Zbl0823.11030MR1333036DOI10.2307/2118560
  19. THUE, A., Über Annäherungwerte algebraischer Zahlen. J. reine angew. Math., 135, 1909, 284-305. MR1580770DOI10.1515/crll.1909.135.284
  20. TIJDEMAN, R., On the equation of Catalan. Acta Arithm., 29, 1976, 197-209. MR404137DOI10.4064/aa-29-2-197-209
  21. VOJTA, P., A more general ABC conjecture. Int. Math. Res. Notices, 21, 1998, 1103-1116. Zbl0923.11059MR1663215DOI10.1155/S1073792898000658
  22. WILES, A., Modular elliptic curves and Fermat's Last Theorem. Annals of Math., 142, 1995, 443-551; Acta Arithm., 89, 1999, 337-378. Zbl0823.11029MR1333035DOI10.2307/2118559
  23. YU, K., p-adic logarithmic forms and group varieties. Acta Arithm., 89, 1999, 337-378. Zbl0928.11031MR1703864DOI10.4064/aa-89-4-337-378
  24. ZHANG, S., Positive line bundles on arithmetic varieties. J. Amer. Math. Soc., 8, 1995, 187-221. Zbl0861.14018MR1254133DOI10.2307/2152886

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.