Effective diophantine approximation on 𝔾 m

Enrico Bombieri

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 1, page 61-89
  • ISSN: 0391-173X

How to cite


Bombieri, Enrico. "Effective diophantine approximation on $\mathbb {G}_m$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.1 (1993): 61-89. <http://eudml.org/doc/84143>.

author = {Bombieri, Enrico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {irrationality measures; effective solution of Thue equation; theorem of Baker-Fel'dman; Liouville's theorem; multiplicative group; generalized Siegel's unit equation},
language = {eng},
number = {1},
pages = {61-89},
publisher = {Scuola normale superiore},
title = {Effective diophantine approximation on $\mathbb \{G\}_m$},
url = {http://eudml.org/doc/84143},
volume = {20},
year = {1993},

AU - Bombieri, Enrico
TI - Effective diophantine approximation on $\mathbb {G}_m$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 1
SP - 61
EP - 89
LA - eng
KW - irrationality measures; effective solution of Thue equation; theorem of Baker-Fel'dman; Liouville's theorem; multiplicative group; generalized Siegel's unit equation
UR - http://eudml.org/doc/84143
ER -


  1. [Ba] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, Cambridge1975. Zbl0297.10013MR422171
  2. [Ba2] A. Baker, Rational approximations to certain algebraic numbers, Quart. J. Math. Oxford, 15 (1964), 375-383. Zbl0222.10036MR171750
  3. [Ba3] A. Baker, Recent advances in transcendence theory, Proceedings of the International Conference in Number Theory, Moscow 14-18 September 1971, Moscow1973, 67-69. Zbl0291.10027MR332669
  4. [Ba-W] A. Baker - G. Wüstholz, Logarithmic Forms and Group Varieties, submitted for publication. Zbl0788.11026
  5. [Bo] E. Bombieri, On the Thue-Siegel theorem, Acta Math., 148 (1982), 255-296. Zbl0505.10015MR666113
  6. [Bo2] E. Bombieri, Lectures on the Thue Principle, Analytic Number Theory and Diophantine Problems, Progr. Math.70, A.C. Adolphson, J.B. Conrey, A. Ghosh, R.I. Yager ed., Birkhäuser1987, 15-52. Zbl0629.10025MR1018368
  7. [Bo-M] E. Bombieri - J. Mueller, On effective measures of irrationality for √a/b and related numbers, J. Reine Angew. Math., 342 (1983), 173-196. Zbl0516.10024
  8. [Bo-V] E. Bombieri - J. Vaaler, On Siegel's Lemma, Invent. Math., 73 (1983), 11-32. Addendum, ibidem, 75 (1984), 177. Zbl0533.10030MR707346
  9. [C] G.V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math., 117 (1983), 325-382. Zbl0518.10038MR690849
  10. [Do] E. Dobrowolski, On the maximum modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci., 26 (1978), 291-292. Zbl0393.12003MR491585
  11. [Dy] F. Dyson, The approximation to algebraic numbers by rationals, Acta Math., 79 (1947), 225-240. Zbl0030.02101MR23854
  12. [F] N.I. Feldman, An effective refinement in the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 985-1002. Zbl0259.10031MR289418
  13. [G] A.O. Gelfond, Transcendental and algebraic numbers. English translation by L.F. Boron, Dover Publications Inc., New York1960. Zbl0090.26103MR111736
  14. [G-P] K. Györy - Z.Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Studies in Pure Mathematics (to the memory of Paul Turán), Akadémiai Kiadó, Budapest and Birkhäuser Verlag, Basel1983, 245-257. Zbl0518.10020MR820227
  15. [H] S. Hyyrö, Über rationale Näherungswerte algebraischer Zahlen, Ann. Acad. Sci. Fenn. Ser. A I Math., 376 (1965), 1-15. Zbl0131.04801MR186627
  16. [M] K. Mahler, Zur Approximation algebraischer Zahlen (I). Über den grössten Primteiler binärer Formen, Math. Ann., 107 (1933), 691-730. Zbl0006.10502MR1512822JFM59.0220.01
  17. [S] C.L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuß. Akad. Wissen. Phys.-Math. Kl. (1929) 1, 1-70.Also Gesammelte Abhandlungen, Springer-Verlag, Berlin-Heidelberg -New York1966, Bd. I, 209-274. JFM56.0180.05
  18. [S2] C.L. Siegel, The integer solutions of the equation y2 = ax n + bxn-1 + ... + k, J. London Math. Soc., 1 (1926), 66-68. JFM52.0149.02
  19. [S3] C.L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen, Math.- Phys. Kl. (1969), 9, 71-86. Zbl0186.36703MR249395
  20. [St] H.M. Stark, Further advances in the theory of linear forms in logarithms, Diophantine Approximation and Its Applications, Charles F. Osgood ed., Academic Press, New York and London1973, 255-293. Zbl0264.10023MR352016
  21. [S-V] T. Struppeck - J.D. Vaaler, Inequalities for heights of algebraic subspaces and the Thue-Siegel Principle, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, B.C. Berndt, H.G. Diamond, H. Halberstam, A. Hildebrand ed., Progr. Math. 85, Birkhäuser Boston, Boston1990, 493-528. Zbl0722.11033MR1084199
  22. [T] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., 135 (1909), 284-305. JFM40.0265.01
  23. [T2] A. Thue, Berechnung aller Lösungen gewisser Gleichungen von der Form axr - byr = f, Videnskabs-Selskabets Skrifter, I. Math.-Naturv. Kl., 4, 9S, Christiania1918. JFM46.1448.07
  24. [V] C. Viola, On Dyson's Lemma, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4) 12 (1985), 105-135. Zbl0596.10032MR818804

Citations in EuDML Documents

  1. E. Bombieri, P. B. Cohen, Effective diophantine approximation on 𝔾 M , II
  2. Yuri Bilu, Yann Bugeaud, Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes
  3. Yann Bugeaud, Kálmán Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations
  4. Pietro Corvaja, Une application nouvelle de la méthode de Thue
  5. E. Bombieri, A. J. Van der Poorten, J. D. Vaaler, Effective measures of irrationality for cubic extensions of number fields
  6. Enrico Bombieri, Diophantine Equations in Low Dimensions
  7. Yann Bugeaud, Kálmán Győry, Bounds for the solutions of unit equations

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.