Effective diophantine approximation on
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)
- Volume: 20, Issue: 1, page 61-89
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBombieri, Enrico. "Effective diophantine approximation on $\mathbb {G}_m$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.1 (1993): 61-89. <http://eudml.org/doc/84143>.
@article{Bombieri1993,
author = {Bombieri, Enrico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {irrationality measures; effective solution of Thue equation; theorem of Baker-Fel'dman; Liouville's theorem; multiplicative group; generalized Siegel's unit equation},
language = {eng},
number = {1},
pages = {61-89},
publisher = {Scuola normale superiore},
title = {Effective diophantine approximation on $\mathbb \{G\}_m$},
url = {http://eudml.org/doc/84143},
volume = {20},
year = {1993},
}
TY - JOUR
AU - Bombieri, Enrico
TI - Effective diophantine approximation on $\mathbb {G}_m$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 1
SP - 61
EP - 89
LA - eng
KW - irrationality measures; effective solution of Thue equation; theorem of Baker-Fel'dman; Liouville's theorem; multiplicative group; generalized Siegel's unit equation
UR - http://eudml.org/doc/84143
ER -
References
top- [Ba] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, Cambridge1975. Zbl0297.10013MR422171
- [Ba2] A. Baker, Rational approximations to certain algebraic numbers, Quart. J. Math. Oxford, 15 (1964), 375-383. Zbl0222.10036MR171750
- [Ba3] A. Baker, Recent advances in transcendence theory, Proceedings of the International Conference in Number Theory, Moscow 14-18 September 1971, Moscow1973, 67-69. Zbl0291.10027MR332669
- [Ba-W] A. Baker - G. Wüstholz, Logarithmic Forms and Group Varieties, submitted for publication. Zbl0788.11026
- [Bo] E. Bombieri, On the Thue-Siegel theorem, Acta Math., 148 (1982), 255-296. Zbl0505.10015MR666113
- [Bo2] E. Bombieri, Lectures on the Thue Principle, Analytic Number Theory and Diophantine Problems, Progr. Math.70, A.C. Adolphson, J.B. Conrey, A. Ghosh, R.I. Yager ed., Birkhäuser1987, 15-52. Zbl0629.10025MR1018368
- [Bo-M] E. Bombieri - J. Mueller, On effective measures of irrationality for √a/b and related numbers, J. Reine Angew. Math., 342 (1983), 173-196. Zbl0516.10024
- [Bo-V] E. Bombieri - J. Vaaler, On Siegel's Lemma, Invent. Math., 73 (1983), 11-32. Addendum, ibidem, 75 (1984), 177. Zbl0533.10030MR707346
- [C] G.V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math., 117 (1983), 325-382. Zbl0518.10038MR690849
- [Do] E. Dobrowolski, On the maximum modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci., 26 (1978), 291-292. Zbl0393.12003MR491585
- [Dy] F. Dyson, The approximation to algebraic numbers by rationals, Acta Math., 79 (1947), 225-240. Zbl0030.02101MR23854
- [F] N.I. Feldman, An effective refinement in the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 985-1002. Zbl0259.10031MR289418
- [G] A.O. Gelfond, Transcendental and algebraic numbers. English translation by L.F. Boron, Dover Publications Inc., New York1960. Zbl0090.26103MR111736
- [G-P] K. Györy - Z.Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Studies in Pure Mathematics (to the memory of Paul Turán), Akadémiai Kiadó, Budapest and Birkhäuser Verlag, Basel1983, 245-257. Zbl0518.10020MR820227
- [H] S. Hyyrö, Über rationale Näherungswerte algebraischer Zahlen, Ann. Acad. Sci. Fenn. Ser. A I Math., 376 (1965), 1-15. Zbl0131.04801MR186627
- [M] K. Mahler, Zur Approximation algebraischer Zahlen (I). Über den grössten Primteiler binärer Formen, Math. Ann., 107 (1933), 691-730. Zbl0006.10502MR1512822JFM59.0220.01
- [S] C.L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuß. Akad. Wissen. Phys.-Math. Kl. (1929) 1, 1-70.Also Gesammelte Abhandlungen, Springer-Verlag, Berlin-Heidelberg -New York1966, Bd. I, 209-274. JFM56.0180.05
- [S2] C.L. Siegel, The integer solutions of the equation y2 = ax n + bxn-1 + ... + k, J. London Math. Soc., 1 (1926), 66-68. JFM52.0149.02
- [S3] C.L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen, Math.- Phys. Kl. (1969), 9, 71-86. Zbl0186.36703MR249395
- [St] H.M. Stark, Further advances in the theory of linear forms in logarithms, Diophantine Approximation and Its Applications, Charles F. Osgood ed., Academic Press, New York and London1973, 255-293. Zbl0264.10023MR352016
- [S-V] T. Struppeck - J.D. Vaaler, Inequalities for heights of algebraic subspaces and the Thue-Siegel Principle, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, B.C. Berndt, H.G. Diamond, H. Halberstam, A. Hildebrand ed., Progr. Math. 85, Birkhäuser Boston, Boston1990, 493-528. Zbl0722.11033MR1084199
- [T] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., 135 (1909), 284-305. JFM40.0265.01
- [T2] A. Thue, Berechnung aller Lösungen gewisser Gleichungen von der Form axr - byr = f, Videnskabs-Selskabets Skrifter, I. Math.-Naturv. Kl., 4, 9S, Christiania1918. JFM46.1448.07
- [V] C. Viola, On Dyson's Lemma, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4) 12 (1985), 105-135. Zbl0596.10032MR818804
Citations in EuDML Documents
top- E. Bombieri, P. B. Cohen, Effective diophantine approximation on , II
- Yuri Bilu, Yann Bugeaud, Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes
- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations
- Pietro Corvaja, Une application nouvelle de la méthode de Thue
- E. Bombieri, A. J. Van der Poorten, J. D. Vaaler, Effective measures of irrationality for cubic extensions of number fields
- Enrico Bombieri, Diophantine Equations in Low Dimensions
- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of unit equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.