Unitary Representations of Reductive Lie Groups
- Volume: 11, Issue: S1, page 147-167
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topVogan, David A.jun.. "Unitary Representations of Reductive Lie Groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.S1 (2000): 147-167. <http://eudml.org/doc/289701>.
@article{Vogan2000,
abstract = {One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem finally is to «quantize» nilpotent coadjoint orbits.},
author = {Vogan, David A.jun.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
language = {eng},
month = {12},
number = {S1},
pages = {147-167},
publisher = {Accademia Nazionale dei Lincei},
title = {Unitary Representations of Reductive Lie Groups},
url = {http://eudml.org/doc/289701},
volume = {11},
year = {2000},
}
TY - JOUR
AU - Vogan, David A.jun.
TI - Unitary Representations of Reductive Lie Groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/12//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - S1
SP - 147
EP - 167
AB - One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem finally is to «quantize» nilpotent coadjoint orbits.
LA - eng
UR - http://eudml.org/doc/289701
ER -
References
top- ARNOLD, V., Mathematical Methods of Classical Mechanics. Springer-Verlag, New York-Heidelberg-Berlin1978. Zbl0386.70001MR690288
- BARBASCH, D. - VOGAN, D., Unipotent representations of complex semisimple Lie groups. Ann. of Math., 121, 1985,41-110. Zbl0582.22007MR782556DOI10.2307/1971193
- BOREL, A. - WALLACH, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press, Princeton, New Jersey1980. MR554917
- DIXMIER, J., Les -algèbres et leurs représentations. Gauthier-Villars, Paris1964. MR171173
- DUFLO, M., Théorie de Mackey pour les groupes de Lie algébriques. Acta Math., 149, 1982, 153-213. Zbl0529.22011MR688348DOI10.1007/BF02392353
- GUICHARDET, A., Cohomologie des Groupes Topologiques et des Algèbres de Lie. CEDIC, Paris1980. MR644979
- KNAPP, A., Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, Princeton, New Jersey1986. Zbl0604.22001MR855239DOI10.1515/9781400883974
- KOSTANT, B., Quantization and unitary representations. In: C. Taam (ed.), Lectures in Modem Analysis and Applications. Lecture Notes in Mathematics, 170, Springer-Verlag, Berlin-Heidelberg-New York1970. MR294568
- KUMARESAN, S., On the canonical k-types in the irreducible unitary g-modules with non-zero relative cohomology. Invent. Math., 59, 1980, 1-11. Zbl0442.22010MR575078DOI10.1007/BF01390311
- MAKEY, G., Mathematical Foundations of Quantum Mechanics. W. A. Benjamin Inc., New York1963. MR155567
- MAKEY, G., Theory of Unitary Group Representations. University of Chicago Press, Chicago1976. MR396826
- MCGOVERN, W., Rings of regular functions on nilpotent orbits and their covers. Inv. Math., 97, 1989, 209-217. Zbl0648.22004MR999319DOI10.1007/BF01850661
- SCHMID, W., cohomology and the discrete series. Ann. of Math., 103, 1976, 375-394. Zbl0333.22009MR396856DOI10.2307/1970944
- TORASSO, P., Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle. Duke Math. J., 90, 1997, 261-377. Zbl0941.22017MR1484858DOI10.1215/S0012-7094-97-09009-8
- VOGAN, D., Unitarizability of certain series of representations. Ann. of Math., 120, 1984, 141-187. Zbl0561.22010MR750719DOI10.2307/2007074
- VOGAN, D., Associated varieties and unipotent representations. In: W. Barker - P. Sally (eds.), Harmonic Analysis on Reductive Groups. Birkhäuser, Boston-Basel-Berlin1991, 315-388. Zbl0832.22019MR1168491
- VOGAN, D., The unitary dual of . Invent. Math., 116, 1994, 677-791. Zbl0808.22003MR1253210DOI10.1007/BF01231578
- VOGAN, D., The method of coadjoint orbits for real reductive groups. Representation Theory of Lie Groups, IAS/Park City Mathematics Series, 8, American Mathematical Society, Providence, RI, 1999. MR1737729
- VOGAN, D. - ZUCKERMAN, G., Unitary representations with non-zero cohomology. Compositio Math., 53, 1984, 51-90. Zbl0692.22008MR762307
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.