Unitary Representations of Reductive Lie Groups

David A.jun. Vogan

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2000)

  • Volume: 11, Issue: S1, page 147-167
  • ISSN: 1120-6330

Abstract

top
One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem finally is to «quantize» nilpotent coadjoint orbits.

How to cite

top

Vogan, David A.jun.. "Unitary Representations of Reductive Lie Groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.S1 (2000): 147-167. <http://eudml.org/doc/289701>.

@article{Vogan2000,
abstract = {One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem finally is to «quantize» nilpotent coadjoint orbits.},
author = {Vogan, David A.jun.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
language = {eng},
month = {12},
number = {S1},
pages = {147-167},
publisher = {Accademia Nazionale dei Lincei},
title = {Unitary Representations of Reductive Lie Groups},
url = {http://eudml.org/doc/289701},
volume = {11},
year = {2000},
}

TY - JOUR
AU - Vogan, David A.jun.
TI - Unitary Representations of Reductive Lie Groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/12//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - S1
SP - 147
EP - 167
AB - One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem finally is to «quantize» nilpotent coadjoint orbits.
LA - eng
UR - http://eudml.org/doc/289701
ER -

References

top
  1. ARNOLD, V., Mathematical Methods of Classical Mechanics. Springer-Verlag, New York-Heidelberg-Berlin1978. Zbl0386.70001MR690288
  2. BARBASCH, D. - VOGAN, D., Unipotent representations of complex semisimple Lie groups. Ann. of Math., 121, 1985,41-110. Zbl0582.22007MR782556DOI10.2307/1971193
  3. BOREL, A. - WALLACH, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press, Princeton, New Jersey1980. MR554917
  4. DIXMIER, J., Les C -algèbres et leurs représentations. Gauthier-Villars, Paris1964. MR171173
  5. DUFLO, M., Théorie de Mackey pour les groupes de Lie algébriques. Acta Math., 149, 1982, 153-213. Zbl0529.22011MR688348DOI10.1007/BF02392353
  6. GUICHARDET, A., Cohomologie des Groupes Topologiques et des Algèbres de Lie. CEDIC, Paris1980. MR644979
  7. KNAPP, A., Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, Princeton, New Jersey1986. Zbl0604.22001MR855239DOI10.1515/9781400883974
  8. KOSTANT, B., Quantization and unitary representations. In: C. Taam (ed.), Lectures in Modem Analysis and Applications. Lecture Notes in Mathematics, 170, Springer-Verlag, Berlin-Heidelberg-New York1970. MR294568
  9. KUMARESAN, S., On the canonical k-types in the irreducible unitary g-modules with non-zero relative cohomology. Invent. Math., 59, 1980, 1-11. Zbl0442.22010MR575078DOI10.1007/BF01390311
  10. MAKEY, G., Mathematical Foundations of Quantum Mechanics. W. A. Benjamin Inc., New York1963. MR155567
  11. MAKEY, G., Theory of Unitary Group Representations. University of Chicago Press, Chicago1976. MR396826
  12. MCGOVERN, W., Rings of regular functions on nilpotent orbits and their covers. Inv. Math., 97, 1989, 209-217. Zbl0648.22004MR999319DOI10.1007/BF01850661
  13. SCHMID, W., L 2 cohomology and the discrete series. Ann. of Math., 103, 1976, 375-394. Zbl0333.22009MR396856DOI10.2307/1970944
  14. TORASSO, P., Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle. Duke Math. J., 90, 1997, 261-377. Zbl0941.22017MR1484858DOI10.1215/S0012-7094-97-09009-8
  15. VOGAN, D., Unitarizability of certain series of representations. Ann. of Math., 120, 1984, 141-187. Zbl0561.22010MR750719DOI10.2307/2007074
  16. VOGAN, D., Associated varieties and unipotent representations. In: W. Barker - P. Sally (eds.), Harmonic Analysis on Reductive Groups. Birkhäuser, Boston-Basel-Berlin1991, 315-388. Zbl0832.22019MR1168491
  17. VOGAN, D., The unitary dual of G 2 . Invent. Math., 116, 1994, 677-791. Zbl0808.22003MR1253210DOI10.1007/BF01231578
  18. VOGAN, D., The method of coadjoint orbits for real reductive groups. Representation Theory of Lie Groups, IAS/Park City Mathematics Series, 8, American Mathematical Society, Providence, RI, 1999. MR1737729
  19. VOGAN, D. - ZUCKERMAN, G., Unitary representations with non-zero cohomology. Compositio Math., 53, 1984, 51-90. Zbl0692.22008MR762307

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.