Disintegration of monomial representations of nilpotent Lie groups. (Désintégration des représentations monomiales des groupes de Lie nilpotents.)
Baklouti, A., Ludwig, J. (1999)
Journal of Lie Theory
Similarity:
Baklouti, A., Ludwig, J. (1999)
Journal of Lie Theory
Similarity:
Arnal, Didier, Baklouti, Ali, Ludwig, Jean, Selmi, Mohamed (2000)
Journal of Lie Theory
Similarity:
Łukasz Garncarek (2014)
Colloquium Mathematicae
Similarity:
We show the irreducibility of some unitary representations of the group of symplectomorphisms and the group of contactomorphisms.
Benjamin Cahen (2019)
Archivum Mathematicum
Similarity:
We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.
Dan Barbasch (1989)
Inventiones mathematicae
Similarity:
Stephen Gelbart (1971-1973)
Séminaire Choquet. Initiation à l'analyse
Similarity:
Wojciech Banaszczyk (1987)
Colloquium Mathematicae
Similarity:
C. Cishahayo, S. De Bièvre (1993)
Annales de l'institut Fourier
Similarity:
It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group can be obtained via contraction from the discrete series of representations of .
Eberhard Kaniuth, M.E.B. Bekka (1988)
Journal für die reine und angewandte Mathematik
Similarity:
Henri Moscovici, Andrei Verona (1978)
Inventiones mathematicae
Similarity:
Henrik Stetkaer, Jacob Jacobsen (1981)
Mathematica Scandinavica
Similarity:
P. Feinsilver, R. Schott (1990)
Mathematische Zeitschrift
Similarity:
N. I. Stoilova, J. Van der Jeugt (2011)
Banach Center Publications
Similarity:
An explicit construction of all finite-dimensional irreducible representations of classical Lie algebras is a solved problem and a Gelfand-Zetlin type basis is known. However the latter lacks the orthogonality property or does not consist of weight vectors for 𝔰𝔬(n) and 𝔰𝔭(2n). In case of Lie superalgebras all finite-dimensional irreducible representations are constructed explicitly only for 𝔤𝔩(1|n), 𝔤𝔩(2|2), 𝔬𝔰𝔭(3|2) and for the so called essentially typical representations...