Equality cases for condenser capacity inequalities under symmetrization

Dimitrios Betsakos; Stamatis Pouliasis

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)

  • Volume: 66, Issue: 2
  • ISSN: 0365-1029

Abstract

top
It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.

How to cite

top

Dimitrios Betsakos, and Stamatis Pouliasis. "Equality cases for condenser capacity inequalities under symmetrization." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.2 (2012): null. <http://eudml.org/doc/289723>.

@article{DimitriosBetsakos2012,
abstract = {It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.},
author = {Dimitrios Betsakos, Stamatis Pouliasis},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Steiner symmetrization; Schwarz symmetrization; polarization; condenser; capacity; Green function},
language = {eng},
number = {2},
pages = {null},
title = {Equality cases for condenser capacity inequalities under symmetrization},
url = {http://eudml.org/doc/289723},
volume = {66},
year = {2012},
}

TY - JOUR
AU - Dimitrios Betsakos
AU - Stamatis Pouliasis
TI - Equality cases for condenser capacity inequalities under symmetrization
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 2
SP - null
AB - It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.
LA - eng
KW - Steiner symmetrization; Schwarz symmetrization; polarization; condenser; capacity; Green function
UR - http://eudml.org/doc/289723
ER -

References

top
  1. Armitage, D. H., Gardiner, S. J., Classical Potential Theory, Springer Monographs in Mathematics, Springer-Verlag, London, 2001. 
  2. Bandle, C., Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics 7, Pitman, London, 1980. 
  3. Betsakos, D., Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels, Ann. Acad. Sci. Fenn. Math. 33, no. 2 (2008), 413-427. 
  4. Betsakos, D., Symmetrization and harmonic measure, Illinois J. Math. 52, no. 3 (2008), 919-949. 
  5. Blasjo, V., The isoperimetric problem, Amer. Math. Monthly 112, no. 6 (2005), 526-566. 
  6. Brelot, M., Etude et extensions du principe de Dirichlet, Ann. Inst. Fourier, Grenoble 5, 371-419 (1954). 
  7. Brock, F., Solynin, A. Y., An approach to symmetrization via polarization, Trans. Amer. Math. Soc. 352, no. 4 (2000), 1759-1796. 
  8. Cianchi, A., Fusco, N., Steiner symmetric extremals in Pólya-Szego-type inequalities, Adv. Math. 203, no. 2 (2006), 673-728. 
  9. Dubinin, V. N., Transformation of functions and the Dirichlet principle, (Russian) Mat. Zametki 38, no. 1 (1985), 49-55; translation in Math. Notes 38 (1985), 539-542. 
  10. Dubinin, V. N., Transformation of condensers in space, (Russian) Dokl. Akad. Nauk SSSR 296, no. 1 (1987), 18-20; translation in Soviet Math. Dokl. 36 (1988), no. 2, 217-219. 
  11. Dubinin, V. N., Capacities and geometric transformations of subsets in n-space, Geom. Funct. Anal. 3, no. 4 (1993), 342-369. 
  12. Dubinin, V. N., Symmetrization in the geometric theory of functions of a complex variable, (Russian), Uspekhi Mat. Nauk 49 (1994), no. 1(295), 3-76; translation in Russian Math. Surveys 49, no. 1 (1994), 1-79. 
  13. Hayman, W. K., Multivalent Functions, Second Edition, Cambridge Tracts in Mathematics, 110, Cambridge University Press, Cambridge, 1994. 
  14. Helms, L. L., Potential Theory, Universitext, Springer-Verlag, London, 2009. 
  15. Jenkins, J. A., Some uniqueness results in the theory of symmetrization, Ann. of Math. (2) 61 (1955), 106-115. 
  16. Jenkins, J. A., Some uniqueness results in the theory of symmetrization II, Ann. of Math. (2) 75 (1962), 223-230. 
  17. Kesavan, S., Symmetrization and Applications, Series in Analysis, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. 
  18. Landkof, N. S., Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer-Verlag, New York-Heidelberg, 1972. 
  19. Ohtsuka, M., Dirichlet Problem, Extremal Length and Prime Ends, Van Nostrand Reinhold, 1970. 
  20. Pólya, G., Szego, G., Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. 
  21. Sarvas, J., Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn. Ser. A I no. 522 (1972), 44 pp. 
  22. Shlyk, V. A., A uniqueness theorem for the symmetrization of arbitrary condensers, (Russian) Sibirsk. Mat. Zh. 23, no. 2 (1982), 165-175. Siberian Math. J. 23 (1982), 267-276. 
  23. Vaisala, J., Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, vol. 229, Springer-Verlag, Berlin-New York, 1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.