Equality cases for condenser capacity inequalities under symmetrization
Dimitrios Betsakos; Stamatis Pouliasis
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)
- Volume: 66, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topDimitrios Betsakos, and Stamatis Pouliasis. "Equality cases for condenser capacity inequalities under symmetrization." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.2 (2012): null. <http://eudml.org/doc/289723>.
@article{DimitriosBetsakos2012,
abstract = {It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.},
author = {Dimitrios Betsakos, Stamatis Pouliasis},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Steiner symmetrization; Schwarz symmetrization; polarization; condenser; capacity; Green function},
language = {eng},
number = {2},
pages = {null},
title = {Equality cases for condenser capacity inequalities under symmetrization},
url = {http://eudml.org/doc/289723},
volume = {66},
year = {2012},
}
TY - JOUR
AU - Dimitrios Betsakos
AU - Stamatis Pouliasis
TI - Equality cases for condenser capacity inequalities under symmetrization
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 2
SP - null
AB - It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.
LA - eng
KW - Steiner symmetrization; Schwarz symmetrization; polarization; condenser; capacity; Green function
UR - http://eudml.org/doc/289723
ER -
References
top- Armitage, D. H., Gardiner, S. J., Classical Potential Theory, Springer Monographs in Mathematics, Springer-Verlag, London, 2001.
- Bandle, C., Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics 7, Pitman, London, 1980.
- Betsakos, D., Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels, Ann. Acad. Sci. Fenn. Math. 33, no. 2 (2008), 413-427.
- Betsakos, D., Symmetrization and harmonic measure, Illinois J. Math. 52, no. 3 (2008), 919-949.
- Blasjo, V., The isoperimetric problem, Amer. Math. Monthly 112, no. 6 (2005), 526-566.
- Brelot, M., Etude et extensions du principe de Dirichlet, Ann. Inst. Fourier, Grenoble 5, 371-419 (1954).
- Brock, F., Solynin, A. Y., An approach to symmetrization via polarization, Trans. Amer. Math. Soc. 352, no. 4 (2000), 1759-1796.
- Cianchi, A., Fusco, N., Steiner symmetric extremals in Pólya-Szego-type inequalities, Adv. Math. 203, no. 2 (2006), 673-728.
- Dubinin, V. N., Transformation of functions and the Dirichlet principle, (Russian) Mat. Zametki 38, no. 1 (1985), 49-55; translation in Math. Notes 38 (1985), 539-542.
- Dubinin, V. N., Transformation of condensers in space, (Russian) Dokl. Akad. Nauk SSSR 296, no. 1 (1987), 18-20; translation in Soviet Math. Dokl. 36 (1988), no. 2, 217-219.
- Dubinin, V. N., Capacities and geometric transformations of subsets in n-space, Geom. Funct. Anal. 3, no. 4 (1993), 342-369.
- Dubinin, V. N., Symmetrization in the geometric theory of functions of a complex variable, (Russian), Uspekhi Mat. Nauk 49 (1994), no. 1(295), 3-76; translation in Russian Math. Surveys 49, no. 1 (1994), 1-79.
- Hayman, W. K., Multivalent Functions, Second Edition, Cambridge Tracts in Mathematics, 110, Cambridge University Press, Cambridge, 1994.
- Helms, L. L., Potential Theory, Universitext, Springer-Verlag, London, 2009.
- Jenkins, J. A., Some uniqueness results in the theory of symmetrization, Ann. of Math. (2) 61 (1955), 106-115.
- Jenkins, J. A., Some uniqueness results in the theory of symmetrization II, Ann. of Math. (2) 75 (1962), 223-230.
- Kesavan, S., Symmetrization and Applications, Series in Analysis, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
- Landkof, N. S., Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer-Verlag, New York-Heidelberg, 1972.
- Ohtsuka, M., Dirichlet Problem, Extremal Length and Prime Ends, Van Nostrand Reinhold, 1970.
- Pólya, G., Szego, G., Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.
- Sarvas, J., Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn. Ser. A I no. 522 (1972), 44 pp.
- Shlyk, V. A., A uniqueness theorem for the symmetrization of arbitrary condensers, (Russian) Sibirsk. Mat. Zh. 23, no. 2 (1982), 165-175. Siberian Math. J. 23 (1982), 267-276.
- Vaisala, J., Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, vol. 229, Springer-Verlag, Berlin-New York, 1971.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.