On a theorem of Lindelof

Vladimir Ya. Gutlyanskii; Olli Martio; Vladimir Ryazanov

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2011)

  • Volume: 65, Issue: 2
  • ISSN: 0365-1029

Abstract

top
We give a quasiconformal version of the proof for the classical Lindelof theorem: Let f map the unit disk 𝔻 conformally onto the inner domain of a Jordan curve 𝒞 : Then 𝒞 is smooth if and only if arg f ' ( z ) has a continuous extension to 𝔻 ¯ . Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.

How to cite

top

Vladimir Ya. Gutlyanskii, Olli Martio, and Vladimir Ryazanov. "On a theorem of Lindelof." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 65.2 (2011): null. <http://eudml.org/doc/289742>.

@article{VladimirYa2011,
abstract = {We give a quasiconformal version of the proof for the classical Lindelof theorem: Let $f$ map the unit disk $\mathbb \{D\}$ conformally onto the inner domain of a Jordan curve $\mathcal \{C\}$: Then $\mathcal \{C\}$ is smooth if and only if arg $f^\{\prime \}(z)$ has a continuous extension to $\overline\{\mathbb \{D\}\}$. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.},
author = {Vladimir Ya. Gutlyanskii, Olli Martio, Vladimir Ryazanov},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Lindelof theorem; infinitesimal geometry; continuous extension to the boundary; differentiability at the boundary; conformal and quaisconformal mappings},
language = {eng},
number = {2},
pages = {null},
title = {On a theorem of Lindelof},
url = {http://eudml.org/doc/289742},
volume = {65},
year = {2011},
}

TY - JOUR
AU - Vladimir Ya. Gutlyanskii
AU - Olli Martio
AU - Vladimir Ryazanov
TI - On a theorem of Lindelof
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2011
VL - 65
IS - 2
SP - null
AB - We give a quasiconformal version of the proof for the classical Lindelof theorem: Let $f$ map the unit disk $\mathbb {D}$ conformally onto the inner domain of a Jordan curve $\mathcal {C}$: Then $\mathcal {C}$ is smooth if and only if arg $f^{\prime }(z)$ has a continuous extension to $\overline{\mathbb {D}}$. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.
LA - eng
KW - Lindelof theorem; infinitesimal geometry; continuous extension to the boundary; differentiability at the boundary; conformal and quaisconformal mappings
UR - http://eudml.org/doc/289742
ER -

References

top
  1. Ahlfors, L. V., Quasiconformal reflections, Acta Math. 109 (1963), 291-301. 
  2. Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand Co., Inc., Toronto, Ont., 1966; Reprinted by Wadsworth & Brooks, Monterey, CA, 1987. 
  3. Gutlyanskii, V. Ya., Ryazanov, V. I., On asymptotically conformal curves, Complex Variables Theory Appl. 25 (1994), 357-366. 
  4. Gutlyanskii, V. Ya., Ryazanov, V. I., On the theory of the local behavior of quasiconformal mappings, Izv. Math. 59 (1995), no. 3, 471-498. 
  5. Gutlyanskii, V. Ya., Martio, O., Ryazanov, V. I. and Vuorinen, M., Infinitesimal geometry of quasiregular mappings, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 1, 
  6. 101-130. 
  7. Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973. 
  8. Lindelof, E., Sur la representation conforme d’une aire simplement connexe sur l’aire d’un cercle, Quatrieme Congres des Mathematiciens Scandinaves, Stockholm, 1916, pp. 59-90. 
  9. Pommerenke, Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg-New York, 1992. 
  10. Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.