Components with the expected codimension in the moduli scheme of stable spin curves
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2015)
- Volume: 69, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topEdoardo Ballico. "Components with the expected codimension in the moduli scheme of stable spin curves." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 69.1 (2015): null. <http://eudml.org/doc/289746>.
@article{EdoardoBallico2015,
abstract = {Here we study the Brill–Noether theory of “extremal” Cornalba’s theta-characteristics on stable curves C of genus g, where “extremal” means that they are line bundles on a quasi-stable model of C with #(Sing(C)) exceptional components.},
author = {Edoardo Ballico},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Stable curve; theta-characteristic; spin curve; Brill–Noether theory},
language = {eng},
number = {1},
pages = {null},
title = {Components with the expected codimension in the moduli scheme of stable spin curves},
url = {http://eudml.org/doc/289746},
volume = {69},
year = {2015},
}
TY - JOUR
AU - Edoardo Ballico
TI - Components with the expected codimension in the moduli scheme of stable spin curves
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2015
VL - 69
IS - 1
SP - null
AB - Here we study the Brill–Noether theory of “extremal” Cornalba’s theta-characteristics on stable curves C of genus g, where “extremal” means that they are line bundles on a quasi-stable model of C with #(Sing(C)) exceptional components.
LA - eng
KW - Stable curve; theta-characteristic; spin curve; Brill–Noether theory
UR - http://eudml.org/doc/289746
ER -
References
top- Arbarello, E., Cornalba, M., Griffiths, P. A., Geometry of Algebraic Curves. Vol. II, Springer, Berlin, 2011.
- Ballico, E., Sections of theta-characteristics on stable curves, Int. J. Pure Appl. Math. 54, No. 3 (2009), 335–340.
- Benzo, L., Components of moduli spaces of spin curves with the expected codimension, Mathematische Annalen (2015), DOI 10.1007/s00208-015-1171-6, arXiv:1307.6954.
- Caporaso, L., A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7, No. 3 (1994), 589–660.
- Cornalba, M., Moduli of curves and theta-characteristics. Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, 560–589.
- Farkas, G., Gaussian maps, Gieseker–Petri loci and large theta-characteristics, J. Reine Angew. Math. 581 (2005), 151–173.
- Fontanari, C., On the geometry of moduli of curves and line bundles, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16, No. 1 (2005), 45–59.
- Harris, J., Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), 611–638.
- Jarvis, T. J., Torsion-free sheaves and moduli of generalized spin curves, Compositio Math. 110, No. 3 (1998), 291–333.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.