The Turán number of the graph 3 P 4

Halina Bielak; Sebastian Kieliszek

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)

  • Volume: 68, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

How to cite

top

Halina Bielak, and Sebastian Kieliszek. "The Turán number of the graph $3P_4$." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.1 (2014): null. <http://eudml.org/doc/289747>.

@article{HalinaBielak2014,
abstract = {Let $ex(n, G)$ denote the maximum number of edges in a graph on $n$ vertices which does not contain $G$ as a subgraph. Let $P_i$ denote a path consisting of $i$ vertices and let $mP_i$ denote $m$ disjoint copies of $P_i$. In this paper we count $ex(n, 3P_4)$.},
author = {Halina Bielak, Sebastian Kieliszek},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {1},
pages = {null},
title = {The Turán number of the graph $3P_4$},
url = {http://eudml.org/doc/289747},
volume = {68},
year = {2014},
}

TY - JOUR
AU - Halina Bielak
AU - Sebastian Kieliszek
TI - The Turán number of the graph $3P_4$
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 1
SP - null
AB - Let $ex(n, G)$ denote the maximum number of edges in a graph on $n$ vertices which does not contain $G$ as a subgraph. Let $P_i$ denote a path consisting of $i$ vertices and let $mP_i$ denote $m$ disjoint copies of $P_i$. In this paper we count $ex(n, 3P_4)$.
LA - eng
KW -
UR - http://eudml.org/doc/289747
ER -

References

top
  1. Bushaw, N., Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853. 
  2. Erdős, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356. 
  3. Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160. 
  4. Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667. 
  5. Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.