The Turán number of the graph 3 P 4

Halina Bielak; Sebastian Kieliszek

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)

  • Volume: 68, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

How to cite

top

Halina Bielak, and Sebastian Kieliszek. "The Turán number of the graph $3P_4$." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.1 (2014): null. <http://eudml.org/doc/289747>.

@article{HalinaBielak2014,
abstract = {Let $ex(n, G)$ denote the maximum number of edges in a graph on $n$ vertices which does not contain $G$ as a subgraph. Let $P_i$ denote a path consisting of $i$ vertices and let $mP_i$ denote $m$ disjoint copies of $P_i$. In this paper we count $ex(n, 3P_4)$.},
author = {Halina Bielak, Sebastian Kieliszek},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {1},
pages = {null},
title = {The Turán number of the graph $3P_4$},
url = {http://eudml.org/doc/289747},
volume = {68},
year = {2014},
}

TY - JOUR
AU - Halina Bielak
AU - Sebastian Kieliszek
TI - The Turán number of the graph $3P_4$
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 1
SP - null
AB - Let $ex(n, G)$ denote the maximum number of edges in a graph on $n$ vertices which does not contain $G$ as a subgraph. Let $P_i$ denote a path consisting of $i$ vertices and let $mP_i$ denote $m$ disjoint copies of $P_i$. In this paper we count $ex(n, 3P_4)$.
LA - eng
KW -
UR - http://eudml.org/doc/289747
ER -

References

top
  1. Bushaw, N., Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853. 
  2. Erdős, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356. 
  3. Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160. 
  4. Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667. 
  5. Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.