The generalized Day norm. Part II. Applications

Monika Budzyńska; Aleksandra Grzesik; Mariola Kot

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 2
  • ISSN: 0365-1029

Abstract

top
In this paper we prove that for each 1 < p , p ˜ < , the Banach space ( l p ˜ , · p ˜ ) can be equivalently renormed in such a way that  the Banach space ( l p ˜ , · L , α , β , p , p ˜ ) is LUR and has a diametrically complete set with empty interior. This result extends the Maluta theorem about existence of such a set in l 2 with the Day norm. We also show that the Banach space ( l p ˜ , · L , α , β , p , p ˜ ) has the weak fixed point property for nonexpansive mappings.

How to cite

top

Monika Budzyńska, Aleksandra Grzesik, and Mariola Kot. "The generalized Day norm. Part II. Applications." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289770>.

@article{MonikaBudzyńska2017,
abstract = {In this paper we prove that for each $1< p, \tilde\{p\} < \infty $, the Banach space $(l^\{\tilde\{p\}\}, \left\Vert \cdot \right\Vert _\{\tilde\{p\}\})$ can be equivalently renormed in such a way that  the Banach space $(l^\{\tilde\{p\}\},\left\Vert \cdot \right\Vert _\{L,\alpha ,\beta ,p,\tilde\{p\}\})$ is LUR and has a diametrically complete set with empty interior. This result extends the Maluta theorem about existence of such a set in $l^2$ with the Day norm. We also show that the Banach space $(l^\{\tilde\{p\}\},\left\Vert \cdot \right\Vert _\{L,\alpha ,\beta ,p,\tilde\{p\}\})$ has the weak fixed point property for nonexpansive mappings.},
author = {Monika Budzyńska, Aleksandra Grzesik, Mariola Kot},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Diametrically complete set; Day norm, fixed point; Kadec-Klee property; LUR space; nonexpansive mapping; non-strict Opial property; 1-unconditional Schauder bases},
language = {eng},
number = {2},
pages = {null},
title = {The generalized Day norm. Part II. Applications},
url = {http://eudml.org/doc/289770},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Monika Budzyńska
AU - Aleksandra Grzesik
AU - Mariola Kot
TI - The generalized Day norm. Part II. Applications
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - In this paper we prove that for each $1< p, \tilde{p} < \infty $, the Banach space $(l^{\tilde{p}}, \left\Vert \cdot \right\Vert _{\tilde{p}})$ can be equivalently renormed in such a way that  the Banach space $(l^{\tilde{p}},\left\Vert \cdot \right\Vert _{L,\alpha ,\beta ,p,\tilde{p}})$ is LUR and has a diametrically complete set with empty interior. This result extends the Maluta theorem about existence of such a set in $l^2$ with the Day norm. We also show that the Banach space $(l^{\tilde{p}},\left\Vert \cdot \right\Vert _{L,\alpha ,\beta ,p,\tilde{p}})$ has the weak fixed point property for nonexpansive mappings.
LA - eng
KW - Diametrically complete set; Day norm, fixed point; Kadec-Klee property; LUR space; nonexpansive mapping; non-strict Opial property; 1-unconditional Schauder bases
UR - http://eudml.org/doc/289770
ER -

References

top
  1. Ayerbe Toledano, J. M., Domınguez Benavides, T., López Acedo, G., Measures of Noncompactness in Metric Fixed Point Theory, Birkhauser, 1997. 
  2. Baillon, J.-B., Schoneberg, R., Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), 257-264. 
  3. Budzyńska, M., Grzesik, A., Kot, M., The generalized Day norm. Part I. Properties, Ann. Univ. Mariae Curie-Skłodowska Sect. A 71 (2) (2017), 33-49. 
  4. Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. 
  5. Holmes, R. B., Geometric Functional Analysis and Its Applications, Springer, 1975. 
  6. Kadec, M. I., On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukrain. RSR 9 (1959), 949-952. 
  7. Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. 
  8. Klee, V., Mappings into normed linear spaces, Fund. Math. 49 (1960/1961), 25-34. 
  9. Lin, P.-K., Unconditional bases and fixed points of nonexpansive mappings, Pacific J. Math. 116 (1985), 69-76. 
  10. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I and II, Springer, 1977. 
  11. Maluta, E., A diametrically complete set with empty interior in a reflexive LUR space, J. Nonlinear Conv. Anal. 18 (2017), 105-111. 
  12. Maluta, E., Papini, P. L., Diametrically complete sets and normal structure, J. Math. Anal. Appl. 424 (2015), 1335-1347. 
  13. Mariadoss, S. A., Soardi, P. M., A remark on asymptotic normal structure in Banach spaces, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), 393-395. 
  14. Moreno, J. P., Papini, P. L., Phelps, R. R., Diametrically maximal and constant width sets in Banach spaces, Canad. J. Math. 58 (2006), 820-842. 
  15. Singer, I., Bases in Banach Spaces I, Springer, 1970. 
  16. Smith, M. A., Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161. 
  17. Smith, M. A., Turett, B., A reflexive LUR Banach space that lacks normal structure, Canad. Math. Bull. 28 (1985), 492-494. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.