The generalized Day norm. Part II. Applications
Monika Budzyńska; Aleksandra Grzesik; Mariola Kot
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)
- Volume: 71, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topMonika Budzyńska, Aleksandra Grzesik, and Mariola Kot. "The generalized Day norm. Part II. Applications." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289770>.
@article{MonikaBudzyńska2017,
abstract = {In this paper we prove that for each $1< p, \tilde\{p\} < \infty $, the Banach space $(l^\{\tilde\{p\}\}, \left\Vert \cdot \right\Vert _\{\tilde\{p\}\})$ can be equivalently renormed in such a way that the Banach space $(l^\{\tilde\{p\}\},\left\Vert \cdot \right\Vert _\{L,\alpha ,\beta ,p,\tilde\{p\}\})$ is LUR and has a diametrically complete set with empty interior. This result extends the Maluta theorem about existence of such a set in $l^2$ with the Day norm. We also show that the Banach space $(l^\{\tilde\{p\}\},\left\Vert \cdot \right\Vert _\{L,\alpha ,\beta ,p,\tilde\{p\}\})$ has the weak fixed point property for nonexpansive mappings.},
author = {Monika Budzyńska, Aleksandra Grzesik, Mariola Kot},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Diametrically complete set; Day norm, fixed point; Kadec-Klee property; LUR space; nonexpansive mapping; non-strict Opial property; 1-unconditional Schauder bases},
language = {eng},
number = {2},
pages = {null},
title = {The generalized Day norm. Part II. Applications},
url = {http://eudml.org/doc/289770},
volume = {71},
year = {2017},
}
TY - JOUR
AU - Monika Budzyńska
AU - Aleksandra Grzesik
AU - Mariola Kot
TI - The generalized Day norm. Part II. Applications
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - In this paper we prove that for each $1< p, \tilde{p} < \infty $, the Banach space $(l^{\tilde{p}}, \left\Vert \cdot \right\Vert _{\tilde{p}})$ can be equivalently renormed in such a way that the Banach space $(l^{\tilde{p}},\left\Vert \cdot \right\Vert _{L,\alpha ,\beta ,p,\tilde{p}})$ is LUR and has a diametrically complete set with empty interior. This result extends the Maluta theorem about existence of such a set in $l^2$ with the Day norm. We also show that the Banach space $(l^{\tilde{p}},\left\Vert \cdot \right\Vert _{L,\alpha ,\beta ,p,\tilde{p}})$ has the weak fixed point property for nonexpansive mappings.
LA - eng
KW - Diametrically complete set; Day norm, fixed point; Kadec-Klee property; LUR space; nonexpansive mapping; non-strict Opial property; 1-unconditional Schauder bases
UR - http://eudml.org/doc/289770
ER -
References
top- Ayerbe Toledano, J. M., Domınguez Benavides, T., López Acedo, G., Measures of Noncompactness in Metric Fixed Point Theory, Birkhauser, 1997.
- Baillon, J.-B., Schoneberg, R., Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), 257-264.
- Budzyńska, M., Grzesik, A., Kot, M., The generalized Day norm. Part I. Properties, Ann. Univ. Mariae Curie-Skłodowska Sect. A 71 (2) (2017), 33-49.
- Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
- Holmes, R. B., Geometric Functional Analysis and Its Applications, Springer, 1975.
- Kadec, M. I., On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukrain. RSR 9 (1959), 949-952.
- Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
- Klee, V., Mappings into normed linear spaces, Fund. Math. 49 (1960/1961), 25-34.
- Lin, P.-K., Unconditional bases and fixed points of nonexpansive mappings, Pacific J. Math. 116 (1985), 69-76.
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I and II, Springer, 1977.
- Maluta, E., A diametrically complete set with empty interior in a reflexive LUR space, J. Nonlinear Conv. Anal. 18 (2017), 105-111.
- Maluta, E., Papini, P. L., Diametrically complete sets and normal structure, J. Math. Anal. Appl. 424 (2015), 1335-1347.
- Mariadoss, S. A., Soardi, P. M., A remark on asymptotic normal structure in Banach spaces, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), 393-395.
- Moreno, J. P., Papini, P. L., Phelps, R. R., Diametrically maximal and constant width sets in Banach spaces, Canad. J. Math. 58 (2006), 820-842.
- Singer, I., Bases in Banach Spaces I, Springer, 1970.
- Smith, M. A., Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161.
- Smith, M. A., Turett, B., A reflexive LUR Banach space that lacks normal structure, Canad. Math. Bull. 28 (1985), 492-494.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.