The generalized Day norm. Part I. Properties

Monika Budzyńska; Aleksandra Grzesik; Mariola Kot

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 2
  • ISSN: 0365-1029

Abstract

top
In this paper we introduce a modification of the Day norm in c 0 ( Γ ) and investigate properties  of this norm.

How to cite

top

Monika Budzyńska, Aleksandra Grzesik, and Mariola Kot. "The generalized Day norm. Part I. Properties." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289789>.

@article{MonikaBudzyńska2017,
abstract = {In this paper we introduce a modification of the Day norm in $c_0(\Gamma )$ and investigate properties  of this norm.},
author = {Monika Budzyńska, Aleksandra Grzesik, Mariola Kot},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Asymptotic normal structure; Day norm; local uniform convexity; normal structure; Opial property; strict convexity; uniform convexity in every direction},
language = {eng},
number = {2},
pages = {null},
title = {The generalized Day norm. Part I. Properties},
url = {http://eudml.org/doc/289789},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Monika Budzyńska
AU - Aleksandra Grzesik
AU - Mariola Kot
TI - The generalized Day norm. Part I. Properties
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - In this paper we introduce a modification of the Day norm in $c_0(\Gamma )$ and investigate properties  of this norm.
LA - eng
KW - Asymptotic normal structure; Day norm; local uniform convexity; normal structure; Opial property; strict convexity; uniform convexity in every direction
UR - http://eudml.org/doc/289789
ER -

References

top
  1. Boas, R. P., Jr., Some uniformly convex spaces, Bull. Amer. Math. Soc. 46 (1940), 304-311. 
  2. Baillon, J.-B., Schoneberg, R., Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), 257-264. 
  3. Brodskii, M. S., Mil’man, D. P., On the center of a convex set, Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 837-840. 
  4. Clarkson, J. A., Unifomly convex spaces, Trans. Amer. Math. Soc. 78 (1936), 396-414. 
  5. Day, M. M., Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516-528. 
  6. Day, M. M., James, R. C., Swaminathan, S., Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051-1059. 
  7. Dodds, P. G., Dodds, T. K., Sedaev, A. A., Sukochev, F. A., Local uniform convexity and Kadec-Klee type properties in K-interpolation spaces. I: General theory, J. Funct. Spaces Appl. 2 (2004), 125-173. 
  8. Garkavi, A. L., On the optimal net and best cross-section of a set in a normed space (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106. 
  9. Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. 
  10. Goebel, K., Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, 1984. 
  11. Hanner, O., On the uniform convexity of L p and l p , Ark. Mat. 3 (1956), 239-244. 
  12. Holmes, R. B., Geometric Functional Analysis and Its Applications, Springer, 1975. 
  13. Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. 
  14. Lovaglia, A. R., Locally uniformly convex Banach spaces, Trans. Amer Math. Soc. 78 (1955), 225-238. 
  15. Maluta, E., A diametrically complete set with empty interior in a reflexive LUR space, J. Nonlinear Conv. Anal. 18 (2017),105-111. 
  16. Mariadoss, S. A., Soardi, P. M., A remark on asymptotic normal structure in Banach spaces, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), 393-395. 
  17. Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. 
  18. Rainwater, J., Local uniform convexity of Day’s norm on c 0 ( Γ ) , Proc. Amer. Math. Soc. 22 (1969), 335-339. 
  19. Smith, M. A., Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161. 
  20. Smith, M. A., Turett, B., A reflexive LUR Banach spaces that lacks normal structure, Canad. Math. Bull. 28 (1985), 492-494. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.