On path-quasar Ramsey numbers
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)
- Volume: 68, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topBinlong Li, and Bo Ning. "On path-quasar Ramsey numbers." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.2 (2014): null. <http://eudml.org/doc/289774>.
@article{BinlongLi2014,
abstract = {Let $G_1$ and $G_2$ be two given graphs. The Ramsey number $R(G_1,G_2)$ is the least integer $r$ such that for every graph $G$ on $r$ vertices, either $G$ contains a $G_1$ or $\overline\{G\}$ contains a $G_2$. Parsons gave a recursive formula to determine the values of $R(P_n,K_\{1,m\})$, where $P_n$ is a path on $n$ vertices and $K_\{1,m\}$ is a star on $m+1$ vertices. In this note, we study the Ramsey numbers $R(P_n,K_1\vee F_m)$, where $F_m$ is a linear forest on $m$ vertices. We determine the exact values of $R(P_n,K_1\vee F_m)$ for the cases $m\le n$ and $m\ge 2n$, and for the case that $F_m$ has no odd component. Moreover, we give a lower bound and an upper bound for the case $n+1\le m\le 2n-1$ and $F_m$ has at least one odd component.},
author = {Binlong Li, Bo Ning},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {On path-quasar Ramsey numbers},
url = {http://eudml.org/doc/289774},
volume = {68},
year = {2014},
}
TY - JOUR
AU - Binlong Li
AU - Bo Ning
TI - On path-quasar Ramsey numbers
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 2
SP - null
AB - Let $G_1$ and $G_2$ be two given graphs. The Ramsey number $R(G_1,G_2)$ is the least integer $r$ such that for every graph $G$ on $r$ vertices, either $G$ contains a $G_1$ or $\overline{G}$ contains a $G_2$. Parsons gave a recursive formula to determine the values of $R(P_n,K_{1,m})$, where $P_n$ is a path on $n$ vertices and $K_{1,m}$ is a star on $m+1$ vertices. In this note, we study the Ramsey numbers $R(P_n,K_1\vee F_m)$, where $F_m$ is a linear forest on $m$ vertices. We determine the exact values of $R(P_n,K_1\vee F_m)$ for the cases $m\le n$ and $m\ge 2n$, and for the case that $F_m$ has no odd component. Moreover, we give a lower bound and an upper bound for the case $n+1\le m\le 2n-1$ and $F_m$ has at least one odd component.
LA - eng
KW -
UR - http://eudml.org/doc/289774
ER -
References
top- Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
- Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (1) (2005), 85–87.
- Dirac, G. A., Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952), 69–81.
- Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (2) (1974), 269–277.
- Graham, R. L., Rothschild, B. L., Spencer, J. H., Ramsey Theory, Second Edition, John Wiley & Sons Inc., New York, 1990.
- Li, B., Ning, B., The Ramsey numbers of paths versus wheels: a complete solution, Electron. J. Combin. 21 (4) (2014), #P4.41.
- Parsons, T. D., Path-star Ramsey numbers, J. Combin. Theory, Ser. B 17 (1) (1974), 51–58.
- Rousseau, C. C., Sheehan, J., A class of Ramsey problems involving trees, J. London Math. Soc. 2 (3) (1978), 392–396.
- Salman, A. N. M., Broersma, H. J., Path-fan Ramsey numbers, Discrete Applied Math. 154 (9) (2006), 1429–1436.
- Salman, A. N. M., Broersma, H. J., Path-kipas Ramsey numbers, Discrete Applied Math. 155 (14) (2007), 1878–1884.
- Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11–20.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.