Elementary examples of Loewner chains generated by densities
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2013)
- Volume: 67, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topAlan Sola. "Elementary examples of Loewner chains generated by densities." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 67.1 (2013): null. <http://eudml.org/doc/289808>.
@article{AlanSola2013,
abstract = {We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.},
author = {Alan Sola},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Loewner equation; starlike functions; absolutely continuous driving measures; growth processes; corners and cusps.},
language = {eng},
number = {1},
pages = {null},
title = {Elementary examples of Loewner chains generated by densities},
url = {http://eudml.org/doc/289808},
volume = {67},
year = {2013},
}
TY - JOUR
AU - Alan Sola
TI - Elementary examples of Loewner chains generated by densities
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2013
VL - 67
IS - 1
SP - null
AB - We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.
LA - eng
KW - Loewner equation; starlike functions; absolutely continuous driving measures; growth processes; corners and cusps.
UR - http://eudml.org/doc/289808
ER -
References
top- Berkson, E., Porta, H., Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.
- Bracci, F., Contreras, M. D., Dıaz-Madrigal, S., Evolution families and the Loewner equation I: the unit disk, J. Reine Angew. Math., to appear.
- Bracci, F., Contreras, M. D., Dıaz-Madrigal, S., Regular poles and -numbers in the theory of holomorphic semigroups, arxiv.org/abs/1201.4705.
- Carleson, L., Makarov, N., Aggregation in the plane and Loewner’s equation, Comm. Math. Phys. 216 (2001), 583–607.
- Carleson, L., Makarov, N., Laplacian path models. Dedicated to the memory of Thomas H. Wolff, J. Anal. Math. 87 (2002), 103–150.
- Contreras, M. D., Dıaz-Madrigal, S., Gumenyuk, P., Geometry behind Loewner chains, Complex Anal. Oper. Theory 4 (2010), 541–587.
- Contreras, M. D., Dıaz-Madrigal, S., Gumenyuk, P., Local duality in Loewner equations, arxiv.org/abs/1202.2334.
- Contreras, M. D., Dıaz-Madrigal, S., Pommerenke, Ch., On boundary critical points for semigroups of analytic functions, Math. Scand. 98 (2006), 125–142.
- Duran, M. A., Vasconcelos, G. L., Interface growth in two dimensions: A Loewner equation approach, Phys. Rev. E 82 (2010), 031601.
- Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems, Birkhauser Verlag, Basel, 2010.
- Gubiec, T., Szymczak, P., Fingered growth in channel geometry: A Loewner equation approach, Phys. Rev. E 77 (2008), 041602.
- Hastings, M., Levitov, L., Laplacian growth as one-dimensional turbulence, Phys. D: Nonlinear Phenomena 116 (1998), 244–252.
- Ivanov, G., Prokhorov, D., Vasil’ev, A., Singular solutions to the Loewner equation, Bull. Sci. Math. 136 (2012), 328–341.
- Johansson Viklund, F., Sola, A., Turner, A., Scaling limits of anisotropic Hastings-Levitov clusters, Ann. Inst. H. Poincar´e Probab. Stat. 48 (2012), 235–257.
- Kager, W., Nienhuis, B., Kadanoff, L. P., Exact solutions for Loewner evolutions, J. Statist. Phys. 115 (2004), 805–822.
- Kuznetsov, A., Boundary behaviour of Loewner chains, arxiv.org/abs/0705.4564.
- Lawler, G., Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, 2005.
- Lind, J., A sharp condition for the Loewner equation to generate slits, Ann. Acad. Sci. Fenn. Math. 30 (2005), 143–158.
- Lind, J., Marshall, D. E., Rohde, S., Collisions and spirals of Loewner traces, Duke Math. J. 154 (2010), 527–573.
- Marshall, D. E., Rohde, S., The Loewner differential equation and slit mappings, J. Amer. Math. Soc. 18 (2005), 763–778.
- Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, 1975.
- Pommerenke, Ch., Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin–Heidelberg, 1992.
- Popescu, M. N., Hentschel, H. G. E., Family, F., Anisotropic diffusion-limited aggregation, Phys. Rev. E 69 (2004), 061403.
- Rohde, S., Zinsmeister, M., Some remarks on Laplacian growth, Topology Appl. 152 (2005), 26–43.
- Selander, G., Two deterministic growth models related to diffusion-limited aggregation. Doctoral dissertation, Thesis (Dr. Tech.), Kungliga Tekniska Hogskolan, 1999, pp. 101.
- Siskakis, A. G., Semi-groups of composition operators on spaces of analytic functions, a review, Studies on composition operators (Laramie, WY, 1996), 229–252, Contemp. Math., 213, Amer. Math. Soc., Providence, R.I., 1998.
- Vasil’ev, A., Evolution of conformal maps with quasiconformal extensions, Bull. Sci. Math. 129 (2005), 831–859.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.