Scaling limits of anisotropic Hastings–Levitov clusters
Fredrik Johansson Viklund; Alan Sola; Amanda Turner
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 1, page 235-257
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJohansson Viklund, Fredrik, Sola, Alan, and Turner, Amanda. "Scaling limits of anisotropic Hastings–Levitov clusters." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 235-257. <http://eudml.org/doc/271973>.
@article{JohanssonViklund2012,
abstract = {We consider a variation of the standard Hastings–Levitov model HL(0), in which growth is anisotropic. Two natural scaling limits are established and we give precise descriptions of the effects of the anisotropy. We show that the limit shapes can be realised as Loewner hulls and that the evolution of harmonic measure on the cluster boundary can be described by the solution to a deterministic ordinary differential equation related to the Loewner equation. We also characterise the stochastic fluctuations around the deterministic limit flow.},
author = {Johansson Viklund, Fredrik, Sola, Alan, Turner, Amanda},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {anisotropic growth models; scaling limits; Loewner differential equation; boundary flow},
language = {eng},
number = {1},
pages = {235-257},
publisher = {Gauthier-Villars},
title = {Scaling limits of anisotropic Hastings–Levitov clusters},
url = {http://eudml.org/doc/271973},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Johansson Viklund, Fredrik
AU - Sola, Alan
AU - Turner, Amanda
TI - Scaling limits of anisotropic Hastings–Levitov clusters
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 235
EP - 257
AB - We consider a variation of the standard Hastings–Levitov model HL(0), in which growth is anisotropic. Two natural scaling limits are established and we give precise descriptions of the effects of the anisotropy. We show that the limit shapes can be realised as Loewner hulls and that the evolution of harmonic measure on the cluster boundary can be described by the solution to a deterministic ordinary differential equation related to the Loewner equation. We also characterise the stochastic fluctuations around the deterministic limit flow.
LA - eng
KW - anisotropic growth models; scaling limits; Loewner differential equation; boundary flow
UR - http://eudml.org/doc/271973
ER -
References
top- [1] R. A. Arratia. Coalescing Brownian motions on the line. Ph.D. thesis, Univ. Wisconsin, 1979. MR2630231
- [2] R. O. Bauer. Discrete Löwner evolution. Ann. Fac. Sci. Toulouse Math. (6) 12 (2003) 433–451. Zbl1054.60102MR2060594
- [3] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1999. Zbl0172.21201MR1700749
- [4] M. Björklund. Ergodic theorems for random clusters. Stochastic Process. Appl.120 (2010) 296–305. Zbl1191.60065MR2584895
- [5] L. Carleson and N. Makarov. Aggregation in the plane and Loewner’s equation. Comm. Math. Phys.216 (2001) 583–607. Zbl1042.82039MR1815718
- [6] L. Carleson and N. Makarov. Laplacian path models. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math.87 (2002) 103–150. Zbl1040.30011MR1945279
- [7] B. Davidovitch, H. G. E. Hentschel, Z. Olami, I. Procaccia, L. M. Sander and E. Somfai. Diffusion limited aggregation and iterated conformal maps. Phys. Rev. E87 (1999) 1366–1378. MR1672801
- [8] M. Eden. A two-dimensional growth process. In Proc. 4th Berkeley Sympos. Math. Statist. and Probab., Vol. IV 223–239. Univ. California Press, Berkeley, CA, 1961. Zbl0104.13801MR136460
- [9] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar. The Brownian web: Characterization and convergence. Ann. Probab.32 (2004) 2857–2883. Zbl1105.60075MR2094432
- [10] J. B. Garnett. Bounded Analytic Functions, reviewed 1st edition. Graduate Texts in Mathematics 236. Springer, New York, 2007. Zbl0469.30024MR2261424
- [11] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, 6th edition. Academic Press, San Diego, 2000. Zbl0981.65001MR1773820
- [12] M. Hastings and L. Levitov. Laplacian growth as one-dimensional turbulence. Phys. D116 (1998) 244–252. Zbl0962.76542
- [13] F. Johansson and A. Sola. Rescaled Lévy–Loewner hulls and random growth. Bull. Sci. Math.133 (2009) 238–256. Zbl1167.30007MR2512828
- [14] R. Julien, M. Kolb and R. Botet. Diffusion limited aggregation with directed and anisotropic diffusion. J. Physique45 (1984) 395–399.
- [15] O. Kallenberg. Random Measures, 3rd edition. Akademie-Verlag, Berlin, 1983. Zbl0544.60053MR818219
- [16] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. Zbl0892.60001MR1876169
- [17] G. Lawler. Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI, 2005. Zbl1074.60002MR2129588
- [18] G. F. Lawler, O. Schramm and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab.32 (2004) 939–995. Zbl1126.82011MR2044671
- [19] R. Malaquias, S. Rohde, V. Sessak and M. Zinsmeister. On Laplacian growth. To appear.
- [20] J. Norris and A. Turner. Planar aggregation and the coalescing Brownian flow. Available at http://arxiv.org/abs/0810.0211. Zbl1327.60086
- [21] Ch. Pommerenke. Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften 299. Springer, Berlin–Heidelberg, 1992. Zbl0762.30001MR1217706
- [22] M. N. Popescu, H. G. E. Hentschel and F. Family. Anisotropic diffusion-limited aggregation. Phys. Rev. E 69 (2004) 061403.
- [23] S. Rohde. Personal communication, 2008.
- [24] S. Rohde and M. Zinsmeister. Some remarks on Laplacian growth. Topology Appl.152 (2005) 26–43. Zbl1077.60040MR2160804
- [25] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001
- [26] B. Tóth and W. Werner. The true self-repelling motion. Probab. Theory Related Fields111 (1998) 375–452. Zbl0912.60056MR1640799
- [27] T. A. Witten, Jr. and L. M. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett.47 (1981) 1400–1403. MR704464
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.