Eccentric distance sum index for some classes of connected graphs
Halina Bielak; Katarzyna Broniszewska
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)
- Volume: 71, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topHalina Bielak, and Katarzyna Broniszewska. "Eccentric distance sum index for some classes of connected graphs." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289850>.
@article{HalinaBielak2017,
abstract = {In this paper we show some properties of the eccentric distance sum index which is defined as follows $\xi ^\{d\}(G)=\sum _\{v \in V(G)\}D(v) \varepsilon (v)$. This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.},
author = {Halina Bielak, Katarzyna Broniszewska},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Adjacent eccentric distance sum; diameter; distance; eccentricity; radius; Wiener index},
language = {eng},
number = {2},
pages = {null},
title = {Eccentric distance sum index for some classes of connected graphs},
url = {http://eudml.org/doc/289850},
volume = {71},
year = {2017},
}
TY - JOUR
AU - Halina Bielak
AU - Katarzyna Broniszewska
TI - Eccentric distance sum index for some classes of connected graphs
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - In this paper we show some properties of the eccentric distance sum index which is defined as follows $\xi ^{d}(G)=\sum _{v \in V(G)}D(v) \varepsilon (v)$. This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.
LA - eng
KW - Adjacent eccentric distance sum; diameter; distance; eccentricity; radius; Wiener index
UR - http://eudml.org/doc/289850
ER -
References
top- Bondy, J. A., Murty, U. S. R., Graph Theory with Application, Macmillan London, and Elsevier, New York, 1976.
- Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401.
- Hua, H., Zhang, S., Xu, K., Further results on the eccentric distance sum, Discrete App. Math. 160 (2012), 170-180.
- Hua, H., Xu, K., Wen, S., A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011), 364-366.
- Ilic, A., Yu, G., Feng, L., On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600.
- Wiener, H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.
- Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99-107.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.