Displaying similar documents to “Eccentric distance sum index for some classes of connected graphs”

Radio numbers for generalized prism graphs

Paul Martinez, Juan Ortiz, Maggy Tomova, Cindy Wyels (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A radio labeling is an assignment c:V(G) → N such that every distinct pair of vertices u,v satisfies the inequality d(u,v) + |c(u)-c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum value. The radio number of G, rn(G), is the minimum span over all radio labelings of G. Generalized prism graphs, denoted Z n , s , s ≥ 1, n ≥ s, have vertex set (i,j) | i = 1,2 and j = 1,...,n and edge set ((i,j),(i,j ±1)) ∪ ((1,i),(2,i+σ)) | σ = -⌊(s-1)/2⌋...,0,...,⌊s/2⌋. In this paper we determine...

2-halvable complete 4-partite graphs

Dalibor Fronček (1998)

Discussiones Mathematicae Graph Theory

Similarity:

A complete 4-partite graph K m , m , m , m is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs K m , m , m , m with at most one odd part all d-halvable graphs are known. In the class of biregular graphs K m , m , m , m with four odd parts (i.e., the graphs K m , m , m , n and K m , m , n , n ) all d-halvable graphs are known as well, except for the graphs K m , m , n , n when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs K m , m , m , m with three...

Roughness in G -graphs

Bibi N. Onagh (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

G -graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding G -graphs. Then we introduce the notion of rough G -graphs and investigate some important properties of these graphs.

On generalized shift graphs

Christian Avart, Tomasz Łuczak, Vojtěch Rödl (2014)

Fundamenta Mathematicae

Similarity:

In 1968 Erdős and Hajnal introduced shift graphs as graphs whose vertices are the k-element subsets of [n] = 1,...,n (or of an infinite cardinal κ ) and with two k-sets A = a , . . . , a k and B = b , . . . , b k joined if a < a = b < a = b < < a k = b k - 1 < b k . They determined the chromatic number of these graphs. In this paper we extend this definition and study the chromatic number of graphs defined similarly for other types of mutual position with respect to the underlying ordering. As a consequence of our result, we show the existence of a graph with...

The hull number of strong product graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2011)

Discussiones Mathematicae Graph Theory

Similarity:

For a connected graph G with at least two vertices and S a subset of vertices, the convex hull [ S ] G is the smallest convex set containing S. The hull number h(G) is the minimum cardinality among the subsets S of V(G) with [ S ] G = V ( G ) . Upper bound for the hull number of strong product G ⊠ H of two graphs G and H is obtainted. Improved upper bounds are obtained for some class of strong product graphs. Exact values for the hull number of some special classes of strong product graphs are obtained. Graphs...

Independent cycles and paths in bipartite balanced graphs

Beata Orchel, A. Paweł Wojda (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Bipartite graphs G = (L,R;E) and H = (L’,R’;E’) are bi-placeabe if there is a bijection f:L∪R→ L’∪R’ such that f(L) = L’ and f(u)f(v) ∉ E’ for every edge uv ∈ E. We prove that if G and H are two bipartite balanced graphs of order |G| = |H| = 2p ≥ 4 such that the sizes of G and H satisfy ||G|| ≤ 2p-3 and ||H|| ≤ 2p-2, and the maximum degree of H is at most 2, then G and H are bi-placeable, unless G and H is one of easily recognizable couples of graphs. This result implies easily that...

Maximal k-independent sets in graphs

Mostafa Blidia, Mustapha Chellali, Odile Favaron, Nacéra Meddah (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A subset of vertices of a graph G is k-independent if it induces in G a subgraph of maximum degree less than k. The minimum and maximum cardinalities of a maximal k-independent set are respectively denoted iₖ(G) and βₖ(G). We give some relations between βₖ(G) and β j ( G ) and between iₖ(G) and i j ( G ) for j ≠ k. We study two families of extremal graphs for the inequality i₂(G) ≤ i(G) + β(G). Finally we give an upper bound on i₂(G) and a lower bound when G is a cactus.

Wiener index of graphs with fixed number of pendant or cut-vertices

Dinesh Pandey, Kamal Lochan Patra (2022)

Czechoslovak Mathematical Journal

Similarity:

The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on n vertices with k pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on n vertices with s cut-vertices.

Equivalent classes for K₃-gluings of wheels

Halina Bielak (1998)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, the chromaticity of K₃-gluings of two wheels is studied. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤ [n/2] all K₃-gluings of wheels W q + 2 and W n - q + 2 create an χ-equivalent class.

The decomposability of additive hereditary properties of graphs

Izak Broere, Michael J. Dorfling (2000)

Discussiones Mathematicae Graph Theory

Similarity:

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that G [ E i ] , the subgraph of G induced by E i , is in i , for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such...

Graph domination in distance two

Gábor Bacsó, Attila Tálos, Zsolt Tuza (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph, and k ≥ 1 an integer. A subgraph D is said to be k-dominating in G if every vertex of G-D is at distance at most k from some vertex of D. For a given class of graphs, Domₖ is the set of those graphs G in which every connected induced subgraph H has some k-dominating induced subgraph D ∈ which is also connected. In our notation, Dom coincides with Dom₁. In this paper we prove that D o m D o m u = D o m u holds for u = all connected graphs without induced P u (u ≥ 2). (In particular,...

The order of uniquely partitionable graphs

Izak Broere, Marietjie Frick, Peter Mihók (1997)

Discussiones Mathematicae Graph Theory

Similarity:

Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by V i has property i . If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.

Reducible properties of graphs

P. Mihók, G. Semanišin (1995)

Discussiones Mathematicae Graph Theory

Similarity:

Let L be the set of all hereditary and additive properties of graphs. For P₁, P₂ ∈ L, the reducible property R = P₁∘P₂ is defined as follows: G ∈ R if and only if there is a partition V(G) = V₁∪ V₂ of the vertex set of G such that V G P and V G P . The aim of this paper is to investigate the structure of the reducible properties of graphs with emphasis on the uniqueness of the decomposition of a reducible property into irreducible ones.

Edge-connectivity of strong products of graphs

Bostjan Bresar, Simon Spacapan (2007)

Discussiones Mathematicae Graph Theory

Similarity:

The strong product G₁ ⊠ G₂ of graphs G₁ and G₂ is the graph with V(G₁)×V(G₂) as the vertex set, and two distinct vertices (x₁,x₂) and (y₁,y₂) are adjacent whenever for each i ∈ 1,2 either x i = y i or x i y i E ( G i ) . In this note we show that for two connected graphs G₁ and G₂ the edge-connectivity λ (G₁ ⊠ G₂) equals minδ(G₁ ⊠ G₂), λ(G₁)(|V(G₂)| + 2|E(G₂)|), λ(G₂)(|V(G₁)| + 2|E(G₁)|). In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.

Total domination of Cartesian products of graphs

Xinmin Hou (2007)

Discussiones Mathematicae Graph Theory

Similarity:

Let γₜ(G) and γ p r ( G ) denote the total domination and the paired domination numbers of graph G, respectively, and let G □ H denote the Cartesian product of graphs G and H. In this paper, we show that γₜ(G)γₜ(H) ≤ 5γₜ(G □ H), which improves the known result γₜ(G)γₜ(H) ≤ 6γₜ(G □ H) given by Henning and Rall.

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

Power Domination in Knödel Graphs and Hanoi Graphs

Seethu Varghese, A. Vijayakumar, Andreas M. Hinz (2018)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we study the power domination problem in Knödel graphs WΔ,2ν and Hanoi graphs [...] Hpn H p n . We determine the power domination number of W3,2ν and provide an upper bound for the power domination number of Wr+1,2r+1 for r ≥ 3. We also compute the k-power domination number and the k-propagation radius of [...] Hp2 H p 2 .

Generalized chromatic numbers and additive hereditary properties of graphs

Izak Broere, Samantha Dorfling, Elizabeth Jonck (2002)

Discussiones Mathematicae Graph Theory

Similarity:

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be additive hereditary properties of graphs. The generalized chromatic number χ ( ) is defined as follows: χ ( ) = n iff ⊆ ⁿ but n - 1 . We investigate the generalized chromatic numbers of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ and ₖ.

Acyclic reducible bounds for outerplanar graphs

Mieczysław Borowiecki, Anna Fiedorowicz, Mariusz Hałuszczak (2009)

Discussiones Mathematicae Graph Theory

Similarity:

For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. G [ V i ] i for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that u V i and v V j is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring....

On choosability of complete multipartite graphs K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 )

Guo-Ping Zheng, Yu-Fa Shen, Zuo-Li Chen, Jin-Feng Lv (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is said to be chromatic-choosable if ch(G) = χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba’s conjecture is true if and only if it is true for complete multipartite graphs. In this paper we show that Ohba’s conjecture is true for complete multipartite graphs K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 ) for all integers t ≥ 1 and k ≥ 2t+2, that is, c h ( K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 ) ) = k , which extends the results c h ( K 4 , 3 , 2 * ( k - 4 ) , 1 * 2 ) = k given by Shen et al. (Discrete Math. 308 (2008) 136-143), and c h ( K 4 , 3 * 2 , 2 * ( k - 6 ) , 1 * 3 ) = k ...

Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties

Izak Broere, Jozef Bucko, Peter Mihók (2002)

Discussiones Mathematicae Graph Theory

Similarity:

Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition V₁,V₂,...,Vₙ of V(G) such that G [ V i ] i for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if i and j are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ 1,2,...,n.