The degree of approximation by Hausdorff means of a conjugate Fourier series

Sergiusz Kęska

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)

  • Volume: 70, Issue: 2
  • ISSN: 0365-1029

Abstract

top
The purpose of this paper is to analyze the degree of approximation of a function that is a conjugate of a function belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.

How to cite

top

Sergiusz Kęska. "The degree of approximation by Hausdorff means of a conjugate Fourier series." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.2 (2016): null. <http://eudml.org/doc/289851>.

@article{SergiuszKęska2016,
abstract = {The purpose of this paper is to analyze the degree of approximation of a function $\overline\{f\}$ that is a conjugate of a function $f$ belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.},
author = {Sergiusz Kęska},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Hausdorff matrix; conjugate series of the Fourier series; degree of approximation},
language = {eng},
number = {2},
pages = {null},
title = {The degree of approximation by Hausdorff means of a conjugate Fourier series},
url = {http://eudml.org/doc/289851},
volume = {70},
year = {2016},
}

TY - JOUR
AU - Sergiusz Kęska
TI - The degree of approximation by Hausdorff means of a conjugate Fourier series
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 2
SP - null
AB - The purpose of this paper is to analyze the degree of approximation of a function $\overline{f}$ that is a conjugate of a function $f$ belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.
LA - eng
KW - Hausdorff matrix; conjugate series of the Fourier series; degree of approximation
UR - http://eudml.org/doc/289851
ER -

References

top
  1. Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949. 
  2. Hausdorff, F., Summationsmethoden und Momentfolgen, Math. Z. 9 (1921), I: 74-109, II: 280–289. 
  3. Hildebrandt, T. H., Schoenberg, I. J., On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math. 34 (1933), 317-328. 
  4. Jakimovski, A., The sequence-to-function analogues to Hausdorff transformations, Bulletin of the Research Council of Israel vol. 8, 1959 (1960). 
  5. Kęska, S., A variant of the Hausdorff theorem for multi-index matrices II, Linear Algebra Appl. 327 (2001), 17-26. 
  6. Lal, S., Approximation of conjugates of almost Lipschitz functions by matrix Cesaro summability method, Arab. J. Math. Sci. 10 (2) (2004), 54. 
  7. Lal, S., Mishra, A., Euler-Hausdorff matrix summability operator and trigonometric approximation of the conjugate of a function belonging to the generalized Lipschitz class, J. Inequal. Appl. (2013), 2013:59. 
  8. Privalov, I. I., Sur les fonctions conjuguees, Bull. Soc. Math. France 44 (1916), 100-103. 
  9. Qureshi, K., On the degree of approximation of function belonging to the Lipschitz class by means of a conjugate series, Indian J. Pure Appl. Math. 12 (9) (1981), 1120-1123. 
  10. Rhoades, B. E., Ozkoklu, Kevser, Albayrak, Inci, On the degree of approximation of functions belonging to a Lipschitz class by Hausdorff means of its Fourier series, Appl. Math. Comput. 217 (2011), 6868-6871. 
  11. Toeplitz, O., Uber allgemeine lineare Mittelbildungen, Prace Matematyczno-Fizyczne 22 (1911), 111-119. 

NotesEmbed ?

top

You must be logged in to post comments.