Linearly-invariant families and generalized Meixner–Pollaczek polynomials
Iwona Naraniecka; Jan Szynal; Anna Tatarczak
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2013)
- Volume: 67, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topIwona Naraniecka, Jan Szynal, and Anna Tatarczak. "Linearly-invariant families and generalized Meixner–Pollaczek polynomials." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 67.1 (2013): null. <http://eudml.org/doc/289852>.
@article{IwonaNaraniecka2013,
abstract = {The extremal functions $f_0(z)$ realizing the maxima of some functionals (e.g. $\max |a_3|$, and $\max \{arg f^\{^\{\prime \}\}(z)\}$) within the so-called universal linearly invariant family $U_\alpha $ (in the sense of Pommerenke [10]) have such a form that $f_0^\{^\{\prime \}\}(z)$ looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials $P_n^\lambda (x;\theta ,\psi )$ of a real variable $x$ as coefficients of \[G^\lambda (x;\theta ,\psi ;z)=\frac\{1\}\{(1-ze^\{i\theta \})^\{\lambda -ix\}(1-ze^\{i\psi \})^\{\lambda +ix\}\}=\sum \_\{n=0\}^\infty P\_n^\lambda (x;\theta ,\psi )z^n,\ |z|<1,\]
where the parameters $\lambda $, $\theta $, $\psi $ satisfy the conditions: $\lambda > 0$, $\theta \in (0,\pi )$, $\psi \in \mathbb \{R\}$. In the case $\psi =-\theta $ we have the well-known (MP) polynomials. The cases $\psi =\pi -\theta $ and $\psi =\pi +\theta $ leads to new sets of polynomials which we call quasi-Meixner-Pollaczek polynomials and strongly symmetric Meixner-Pollaczek polynomials. If $x=0$, then we have an obvious generalization of the Gegenbauer polynomials.The properties of (GMP) polynomials as well as of some families of holomorphic functions $|z|<1$ defined by the Stieltjes-integral formula, where the function $zG^\{\lambda \}(x; \theta , \psi ;z)$ is a kernel, will be discussed.},
author = {Iwona Naraniecka, Jan Szynal, Anna Tatarczak},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {1},
pages = {null},
title = {Linearly-invariant families and generalized Meixner–Pollaczek polynomials},
url = {http://eudml.org/doc/289852},
volume = {67},
year = {2013},
}
TY - JOUR
AU - Iwona Naraniecka
AU - Jan Szynal
AU - Anna Tatarczak
TI - Linearly-invariant families and generalized Meixner–Pollaczek polynomials
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2013
VL - 67
IS - 1
SP - null
AB - The extremal functions $f_0(z)$ realizing the maxima of some functionals (e.g. $\max |a_3|$, and $\max {arg f^{^{\prime }}(z)}$) within the so-called universal linearly invariant family $U_\alpha $ (in the sense of Pommerenke [10]) have such a form that $f_0^{^{\prime }}(z)$ looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials $P_n^\lambda (x;\theta ,\psi )$ of a real variable $x$ as coefficients of \[G^\lambda (x;\theta ,\psi ;z)=\frac{1}{(1-ze^{i\theta })^{\lambda -ix}(1-ze^{i\psi })^{\lambda +ix}}=\sum _{n=0}^\infty P_n^\lambda (x;\theta ,\psi )z^n,\ |z|<1,\]
where the parameters $\lambda $, $\theta $, $\psi $ satisfy the conditions: $\lambda > 0$, $\theta \in (0,\pi )$, $\psi \in \mathbb {R}$. In the case $\psi =-\theta $ we have the well-known (MP) polynomials. The cases $\psi =\pi -\theta $ and $\psi =\pi +\theta $ leads to new sets of polynomials which we call quasi-Meixner-Pollaczek polynomials and strongly symmetric Meixner-Pollaczek polynomials. If $x=0$, then we have an obvious generalization of the Gegenbauer polynomials.The properties of (GMP) polynomials as well as of some families of holomorphic functions $|z|<1$ defined by the Stieltjes-integral formula, where the function $zG^{\lambda }(x; \theta , \psi ;z)$ is a kernel, will be discussed.
LA - eng
KW -
UR - http://eudml.org/doc/289852
ER -
References
top- Araaya, T. K., The symmetric Meixner–Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.
- Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- Duren, P. L., Univalent Functions, Springer, New York, 1983.
- Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, 1953.
- Golusin, G., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I., 1969.
- Ismail, M., On sieved ultraspherical polynomials I: Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), 1093–1113.
- Kiepiela, K., Naraniecka, I., Szynal, J., The Gegenbauer polynomials and typically real functions, J. Comp. Appl. Math 153 (2003), 273–282.
- Koekoek, R., Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Delft University of Technology, 1998.
- Koornwinder, T. H., Meixner–Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys. 30 (4) (1989), 767–769.
- Pommerenke, Ch., Linear-invariant Familien analytischer Funktionen, Mat. Ann. 155 (1964), 108–154.
- Poularikas, A. D., The Mellin Transform, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, Boca Raton, 1999.
- Robertson, M. S., On the coefficients of typically-real functions, Bull. Amer. Math. Soc. 41 (1935), 565–572.
- Rogosinski, W. W., Uber positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93–121.
- Starkov, V. V., The estimates of coefficients in locally-univalent family , Vestnik Lenin. Gosud. Univ. 13 (1984), 48–54 (Russian).
- Starkov, V. V., Linear-invariant families of functions, Dissertation, Ekatirenburg, 1989, 1–287 (Russian).
- Szynal, J., An extension of typically-real functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48 (1994), 193–201.
- Szynal, J., Waniurski, J., Some problems for linearly invariant families, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 30 (1976), 91–102.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.