Oscillations caused by retarded perturbations of first order linear ordinary differential equations

G.S. Ladde

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1977)

  • Volume: 63, Issue: 5, page 351-359
  • ISSN: 0392-7881

How to cite

top

Ladde, G.S.. "Oscillations caused by retarded perturbations of first order linear ordinary differential equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 63.5 (1977): 351-359. <http://eudml.org/doc/289938>.

@article{Ladde1977,
author = {Ladde, G.S.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {11},
number = {5},
pages = {351-359},
publisher = {Accademia Nazionale dei Lincei},
title = {Oscillations caused by retarded perturbations of first order linear ordinary differential equations},
url = {http://eudml.org/doc/289938},
volume = {63},
year = {1977},
}

TY - JOUR
AU - Ladde, G.S.
TI - Oscillations caused by retarded perturbations of first order linear ordinary differential equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1977/11//
PB - Accademia Nazionale dei Lincei
VL - 63
IS - 5
SP - 351
EP - 359
LA - eng
UR - http://eudml.org/doc/289938
ER -

References

top
  1. BURTON, T. A. and HADDOCK, J. R. - On the delay differential equations x ( t ) + a ( t ) f ( x ( t - τ ) ) = 0 and x ′′ ( t ) + a ( t ) f ( x ( t - r ( t ) ) ) = 0 , «J. Math. Anal. Appl.», (to appear). Zbl0344.34065MR399621DOI10.1016/0022-247X(76)90233-X
  2. LADAS, G. (1976) - Sharp conditions for oscillation caused by delays, University of Rhode Island, Kingston, R. I., Tech. Report N. 64, September, pp. 1-9. MR539534DOI10.1080/00036817908839256
  3. LADAS, G., LAKSHMIKANTHAM, V. and PAPAKADIS, J. S. (1972) - Oscillations of higher-order retarded differential equations generated by the retarded argument, Delay and Functional Differential Equations and their Applications, Academic Press, New York, pp. 219-231. MR387776
  4. LILLO, J. C. (1969) - Oscillatory solutions of y ( x ) = m ( x ) y ( x - n ( x ) ) , «J. Differential Equations», 6, 1-35. Zbl0174.39804MR241780DOI10.1016/0022-0396(69)90114-4
  5. TOMARAS, A. (1975) - Oscillations of an equation relevant to an industrial problem, «Bull. Austral. Math. Soc.», 12, 425-431. Zbl0299.34101MR382813DOI10.1017/S0004972700024084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.