Oscillation of deviating differential equations
Mathematica Bohemica (2020)
- Volume: 145, Issue: 4, page 435-448
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChatzarakis, George E.. "Oscillation of deviating differential equations." Mathematica Bohemica 145.4 (2020): 435-448. <http://eudml.org/doc/297359>.
@article{Chatzarakis2020,
abstract = {Consider the first-order linear delay (advanced) differential equation\[ x^\{\prime \}(t)+p(t)x( \tau (t)) =0\quad (x^\{\prime \}(t)-q(t)x(\sigma (t)) =0),\quad t\ge t\_\{0\}, \]
where $p$$(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$$(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions\[ \limsup \limits \_\{t\rightarrow \infty \}\int \_\{\tau (t)\}^\{t\}p(s) \{\rm d\}s>1\quad \biggl (\limsup \limits \_\{t\rightarrow \infty \}\int \_\{t\}^\{\sigma (t)\}q(s) \{\rm d\}s>1\bigg ) \]
and \[ \liminf \_\{t\rightarrow \infty \}\int \_\{\tau (t)\}^\{t\}p(s) \{\rm d\}s>\frac\{1\}\{\rm e\}\quad \biggl (\liminf \_\{t\rightarrow \infty \}\int \_\{t\}^\{\sigma (t)\}q(s) \{\rm d\}s>\frac\{1\}\{\rm e\}\bigg ) \]
are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.},
author = {Chatzarakis, George E.},
journal = {Mathematica Bohemica},
keywords = {differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality},
language = {eng},
number = {4},
pages = {435-448},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation of deviating differential equations},
url = {http://eudml.org/doc/297359},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Chatzarakis, George E.
TI - Oscillation of deviating differential equations
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 435
EP - 448
AB - Consider the first-order linear delay (advanced) differential equation\[ x^{\prime }(t)+p(t)x( \tau (t)) =0\quad (x^{\prime }(t)-q(t)x(\sigma (t)) =0),\quad t\ge t_{0}, \]
where $p$$(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$$(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions\[ \limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg ) \]
and \[ \liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac{1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac{1}{\rm e}\bigg ) \]
are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
LA - eng
KW - differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
UR - http://eudml.org/doc/297359
ER -
References
top- Braverman, E., Karpuz, B., 10.1016/j.amc.2011.09.035, Appl. Math. Comput. 218 (2011), 3880-3887. (2011) Zbl1256.39013MR2851485DOI10.1016/j.amc.2011.09.035
- Chatzarakis, G. E., Differential equations with non-monotone arguments: Iterative oscillation results, J. Math. Comput. Sci. 6 (2016), 953-964. (2016)
- Chatzarakis, G. E., 10.1007/s00009-017-0883-0, Mediterr. J. Math. 14 (2017), Paper No. 82, 17 pages. (2017) Zbl1369.34088MR3620160DOI10.1007/s00009-017-0883-0
- Chatzarakis, G. E., Jadlovská, I., 10.7494/OpMath.2018.38.3.327, Opusc. Math. 38 (2018), 327-356. (2018) Zbl1405.34056MR3781617DOI10.7494/OpMath.2018.38.3.327
- Chatzarakis, G. E., Jadlovská, I., Oscillations in differential equations caused by non-monotone arguments, (to appear) in Nonlinear Stud. MR4159431
- Chatzarakis, G. E., Li, T., 10.1155/2018/8237634, Complexity 2018 (2018), Article ID 8237634, 18 pages. (2018) Zbl1407.34045DOI10.1155/2018/8237634
- Chatzarakis, G. E., Ocalan, " O. ", 10.1080/14689367.2015.1036007, Dyn. Syst. 30 (2015), 310-323. (2015) Zbl1330.34107MR3373715DOI10.1080/14689367.2015.1036007
- El-Morshedy, H. A., Attia, E. R., 10.1016/j.aml.2015.10.014, Appl. Math. Lett. 54 (2016), 54-59. (2016) Zbl1331.34132MR3434455DOI10.1016/j.aml.2015.10.014
- Erbe, L. H., Kong, Q., Zhang, B. G., Oscillation Theory for Functional Differential Equations, Pure and Applied Mathematics 190. Marcel Dekker, New York (1995). (1995) Zbl0821.34067MR1309905
- Erbe, L. H., Zhang, B. G., Oscillation for first order linear differential equations with deviating arguments, Differ. Integral Equ. 1 (1988), 305-314. (1988) Zbl0723.34055MR929918
- Fukagai, N., Kusano, T., 10.1007/BF01773379, Ann. Mat. Pura Appl., IV. Ser. 136 (1984), 95-117. (1984) Zbl0552.34062MR765918DOI10.1007/BF01773379
- Györi, I., Ladas, G., Oscillation Theory of Delay Differential Equations. With Applications, Clarendon Press, Oxford (1991). (1991) Zbl0780.34048MR1168471
- Koplatadze, R. G., Chanturiya, T. A., Oscillating and monotone solutions of first order differential equations with deviating argument, Differ. Uravn. 18 (1982), 1463-1465 Russian. (1982) Zbl0496.34044MR0671174
- Koplatadze, R. G., Kvinikadze, G., 10.1007/BF02254685, Georgian Math. J. 1 (1994), 675-685. (1994) Zbl0810.34068MR1296574DOI10.1007/BF02254685
- Kwong, M. K., 10.1016/0022-247X(91)90396-H, J. Math. Anal. Appl. 156 (1991), 274-286. (1991) Zbl0727.34064MR1102611DOI10.1016/0022-247X(91)90396-H
- Ladas, G., Lakshmikantham, V., Papadakis, J. S., 10.1016/B978-0-12-627250-5.50013-7, Delay and Functional Differential Equations and Their Applications Academic Press, New York (1972), 219-231 K. Schmitt. (1972) Zbl0273.34052MR0387776DOI10.1016/B978-0-12-627250-5.50013-7
- Ladde, G. S., Oscillations caused by retarded perturbations of first order linear ordinary differential equations, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 63 (1977), 351-359. (1977) Zbl0402.34058MR0548601
- Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). (1987) Zbl0832.34071MR1017244
- Li, X., Zhu, D., 10.1016/S0022-247X(02)00029-X, J. Math. Anal. Appl. 269 (2002), 462-488. (2002) Zbl1013.34067MR1907126DOI10.1016/S0022-247X(02)00029-X
- Myshkis, A. D., Linear homogeneous differential equations of the first order with deviating arguments, Usp. Mat. Nauk 5 (1950), 160-162 Russian. (1950) Zbl0041.42108MR0036423
- Yu, J. S., Wang, Z. C., Zhang, B. G., Qian, X. Z., Oscillations of differential equations with deviating arguments, Panam. Math. J. 2 (1992), 59-78. (1992) Zbl0845.34082MR1160129
- Zhang, B. G., Oscillation of solutions of the first-order advanced type differential equations, Sci. Exploration 2 (1982), 79-82. (1982) MR713776
- Zhou, D., On some problems on oscillation of functional differential equations of first order, J. Shandong Univ., Nat. Sci. Ed. 25 (1990), 434-442. (1990) Zbl0726.34060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.