Oscillation of deviating differential equations

George E. Chatzarakis

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 4, page 435-448
  • ISSN: 0862-7959

Abstract

top
Consider the first-order linear delay (advanced) differential equation x ' ( t ) + p ( t ) x ( τ ( t ) ) = 0 ( x ' ( t ) - q ( t ) x ( σ ( t ) ) = 0 ) , t t 0 , where p ( q ) is a continuous function of nonnegative real numbers and the argument τ ( t ) ( σ ( t ) ) is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions lim sup t τ ( t ) t p ( s ) d s > 1 lim sup t t σ ( t ) q ( s ) d s > 1 and lim inf t τ ( t ) t p ( s ) d s > 1 e lim inf t t σ ( t ) q ( s ) d s > 1 e are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.

How to cite

top

Chatzarakis, George E.. "Oscillation of deviating differential equations." Mathematica Bohemica 145.4 (2020): 435-448. <http://eudml.org/doc/297359>.

@article{Chatzarakis2020,
abstract = {Consider the first-order linear delay (advanced) differential equation\[ x^\{\prime \}(t)+p(t)x( \tau (t)) =0\quad (x^\{\prime \}(t)-q(t)x(\sigma (t)) =0),\quad t\ge t\_\{0\}, \] where $p$$(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$$(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions\[ \limsup \limits \_\{t\rightarrow \infty \}\int \_\{\tau (t)\}^\{t\}p(s) \{\rm d\}s>1\quad \biggl (\limsup \limits \_\{t\rightarrow \infty \}\int \_\{t\}^\{\sigma (t)\}q(s) \{\rm d\}s>1\bigg ) \] and \[ \liminf \_\{t\rightarrow \infty \}\int \_\{\tau (t)\}^\{t\}p(s) \{\rm d\}s>\frac\{1\}\{\rm e\}\quad \biggl (\liminf \_\{t\rightarrow \infty \}\int \_\{t\}^\{\sigma (t)\}q(s) \{\rm d\}s>\frac\{1\}\{\rm e\}\bigg ) \] are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.},
author = {Chatzarakis, George E.},
journal = {Mathematica Bohemica},
keywords = {differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality},
language = {eng},
number = {4},
pages = {435-448},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation of deviating differential equations},
url = {http://eudml.org/doc/297359},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Chatzarakis, George E.
TI - Oscillation of deviating differential equations
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 435
EP - 448
AB - Consider the first-order linear delay (advanced) differential equation\[ x^{\prime }(t)+p(t)x( \tau (t)) =0\quad (x^{\prime }(t)-q(t)x(\sigma (t)) =0),\quad t\ge t_{0}, \] where $p$$(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$$(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions\[ \limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg ) \] and \[ \liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac{1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac{1}{\rm e}\bigg ) \] are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
LA - eng
KW - differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
UR - http://eudml.org/doc/297359
ER -

References

top
  1. Braverman, E., Karpuz, B., 10.1016/j.amc.2011.09.035, Appl. Math. Comput. 218 (2011), 3880-3887. (2011) Zbl1256.39013MR2851485DOI10.1016/j.amc.2011.09.035
  2. Chatzarakis, G. E., Differential equations with non-monotone arguments: Iterative oscillation results, J. Math. Comput. Sci. 6 (2016), 953-964. (2016) 
  3. Chatzarakis, G. E., 10.1007/s00009-017-0883-0, Mediterr. J. Math. 14 (2017), Paper No. 82, 17 pages. (2017) Zbl1369.34088MR3620160DOI10.1007/s00009-017-0883-0
  4. Chatzarakis, G. E., Jadlovská, I., 10.7494/OpMath.2018.38.3.327, Opusc. Math. 38 (2018), 327-356. (2018) Zbl1405.34056MR3781617DOI10.7494/OpMath.2018.38.3.327
  5. Chatzarakis, G. E., Jadlovská, I., Oscillations in differential equations caused by non-monotone arguments, (to appear) in Nonlinear Stud. MR4159431
  6. Chatzarakis, G. E., Li, T., 10.1155/2018/8237634, Complexity 2018 (2018), Article ID 8237634, 18 pages. (2018) Zbl1407.34045DOI10.1155/2018/8237634
  7. Chatzarakis, G. E., Ocalan, " O. ", 10.1080/14689367.2015.1036007, Dyn. Syst. 30 (2015), 310-323. (2015) Zbl1330.34107MR3373715DOI10.1080/14689367.2015.1036007
  8. El-Morshedy, H. A., Attia, E. R., 10.1016/j.aml.2015.10.014, Appl. Math. Lett. 54 (2016), 54-59. (2016) Zbl1331.34132MR3434455DOI10.1016/j.aml.2015.10.014
  9. Erbe, L. H., Kong, Q., Zhang, B. G., Oscillation Theory for Functional Differential Equations, Pure and Applied Mathematics 190. Marcel Dekker, New York (1995). (1995) Zbl0821.34067MR1309905
  10. Erbe, L. H., Zhang, B. G., Oscillation for first order linear differential equations with deviating arguments, Differ. Integral Equ. 1 (1988), 305-314. (1988) Zbl0723.34055MR929918
  11. Fukagai, N., Kusano, T., 10.1007/BF01773379, Ann. Mat. Pura Appl., IV. Ser. 136 (1984), 95-117. (1984) Zbl0552.34062MR765918DOI10.1007/BF01773379
  12. Györi, I., Ladas, G., Oscillation Theory of Delay Differential Equations. With Applications, Clarendon Press, Oxford (1991). (1991) Zbl0780.34048MR1168471
  13. Koplatadze, R. G., Chanturiya, T. A., Oscillating and monotone solutions of first order differential equations with deviating argument, Differ. Uravn. 18 (1982), 1463-1465 Russian. (1982) Zbl0496.34044MR0671174
  14. Koplatadze, R. G., Kvinikadze, G., 10.1007/BF02254685, Georgian Math. J. 1 (1994), 675-685. (1994) Zbl0810.34068MR1296574DOI10.1007/BF02254685
  15. Kwong, M. K., 10.1016/0022-247X(91)90396-H, J. Math. Anal. Appl. 156 (1991), 274-286. (1991) Zbl0727.34064MR1102611DOI10.1016/0022-247X(91)90396-H
  16. Ladas, G., Lakshmikantham, V., Papadakis, J. S., 10.1016/B978-0-12-627250-5.50013-7, Delay and Functional Differential Equations and Their Applications Academic Press, New York (1972), 219-231 K. Schmitt. (1972) Zbl0273.34052MR0387776DOI10.1016/B978-0-12-627250-5.50013-7
  17. Ladde, G. S., Oscillations caused by retarded perturbations of first order linear ordinary differential equations, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 63 (1977), 351-359. (1977) Zbl0402.34058MR0548601
  18. Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). (1987) Zbl0832.34071MR1017244
  19. Li, X., Zhu, D., 10.1016/S0022-247X(02)00029-X, J. Math. Anal. Appl. 269 (2002), 462-488. (2002) Zbl1013.34067MR1907126DOI10.1016/S0022-247X(02)00029-X
  20. Myshkis, A. D., Linear homogeneous differential equations of the first order with deviating arguments, Usp. Mat. Nauk 5 (1950), 160-162 Russian. (1950) Zbl0041.42108MR0036423
  21. Yu, J. S., Wang, Z. C., Zhang, B. G., Qian, X. Z., Oscillations of differential equations with deviating arguments, Panam. Math. J. 2 (1992), 59-78. (1992) Zbl0845.34082MR1160129
  22. Zhang, B. G., Oscillation of solutions of the first-order advanced type differential equations, Sci. Exploration 2 (1982), 79-82. (1982) MR713776
  23. Zhou, D., On some problems on oscillation of functional differential equations of first order, J. Shandong Univ., Nat. Sci. Ed. 25 (1990), 434-442. (1990) Zbl0726.34060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.