Adaptive maximum-likelihood-like estimation in linear models. I. Consistency
Kybernetika (1992)
- Volume: 28, Issue: 5, page 357-382
- ISSN: 0023-5954
Access Full Article
topHow to cite
topVíšek, Jan Ámos. "Adaptive maximum-likelihood-like estimation in linear models. I. Consistency." Kybernetika 28.5 (1992): 357-382. <http://eudml.org/doc/29018>.
@article{Víšek1992,
author = {Víšek, Jan Ámos},
journal = {Kybernetika},
keywords = {adaptive estimator; maximization of kernel estimates of densities of residuals; consistency},
language = {eng},
number = {5},
pages = {357-382},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Adaptive maximum-likelihood-like estimation in linear models. I. Consistency},
url = {http://eudml.org/doc/29018},
volume = {28},
year = {1992},
}
TY - JOUR
AU - Víšek, Jan Ámos
TI - Adaptive maximum-likelihood-like estimation in linear models. I. Consistency
JO - Kybernetika
PY - 1992
PB - Institute of Information Theory and Automation AS CR
VL - 28
IS - 5
SP - 357
EP - 382
LA - eng
KW - adaptive estimator; maximization of kernel estimates of densities of residuals; consistency
UR - http://eudml.org/doc/29018
ER -
References
top- R. Beran, An efficient and robust adaptive estimator of location, Ann. Statist. 6 (1978), 292-313. (1978) Zbl0378.62051MR0518885
- M. Csörgö, P. Révész, Strong Approximations in Probability and Statistics, Akadémiai Kiadó, Budapest 1981. (1981) MR0666546
- E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin - Heidelberg - New York 1965. (1965) Zbl0137.03202MR0367121
- R. A. Maronna, V.J. Yohai, Asymptotic behaviour of general M-estimates for regression and scale with random carriers, Z. Wahrsch. verw. Gebiete 58 (1981), 7-20. (1981) MR0635268
- R. C. Rao, Linear Statistical Inference and Its Applications, J. Wiley, New York 1973. (1973) Zbl0256.62002MR0346957
- J. Á. Víšek, Adaptive estimation in linear regression model, Part 1. Consistency. Kybernetika 28 (1991), 1, 26-36. (1991) MR1159872
- J. Á. Víšek, Adaptive estimation in linear regression model, Part 2. Asymptotic normality. Kyber- netika 28 (1991), 2, 100-119. (1991) MR1169213
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.