The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach

Giuliano Gargiulo; Elvira Zappale

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 1, page 159-194
  • ISSN: 0392-4033

Abstract

top
Dimension reduction is used to derive the energy of non simple materials grade two thin films. Relaxation and Γ convergence lead to a limit defined on a suitable space of bi-dimensional Young measures. The underlying ``deformation'' in the limit model takes into account the Cosserat theory.

How to cite

top

Gargiulo, Giuliano, and Zappale, Elvira. "The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach." Bollettino dell'Unione Matematica Italiana 10-B.1 (2007): 159-194. <http://eudml.org/doc/290356>.

@article{Gargiulo2007,
abstract = {Dimension reduction is used to derive the energy of non simple materials grade two thin films. Relaxation and $\Gamma$ convergence lead to a limit defined on a suitable space of bi-dimensional Young measures. The underlying ``deformation'' in the limit model takes into account the Cosserat theory.},
author = {Gargiulo, Giuliano, Zappale, Elvira},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {159-194},
publisher = {Unione Matematica Italiana},
title = {The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach},
url = {http://eudml.org/doc/290356},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Gargiulo, Giuliano
AU - Zappale, Elvira
TI - The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/2//
PB - Unione Matematica Italiana
VL - 10-B
IS - 1
SP - 159
EP - 194
AB - Dimension reduction is used to derive the energy of non simple materials grade two thin films. Relaxation and $\Gamma$ convergence lead to a limit defined on a suitable space of bi-dimensional Young measures. The underlying ``deformation'' in the limit model takes into account the Cosserat theory.
LA - eng
UR - http://eudml.org/doc/290356
ER -

References

top
  1. ACERBI, E. - BUTTAZZO, G., PERCIVALE, D., A Variational Definition of the Strain Energy for an Elastic String, J. Elasticity, 25, n. 2 (1991), 137-148. Zbl0734.73094MR1111364DOI10.1007/BF00042462
  2. ANTMAN, S. S., Nonlinear Problems in Elasticity, Applied Mathemathical Science, 107, Springer Verlag, New York, (1995). Zbl0820.73002MR1323857DOI10.1007/978-1-4757-4147-6
  3. ANZELLOTTI, - BALDO, S. - PERCIVALE, D., Dimension reduction in variational problems, asymptotic development in Γ -convergence and thin strucutures in elasticity, Asymptot. Anal., 9, No. 1 (1994), 61-100. Zbl0811.49020MR1285017
  4. BALL, J., A version of the fundamental theorem for Young measures, PDE's and Continuum Models of Phase Transition, M. RASCLE, D. SERRE - M. SLEMROD, eds., Lecture Notes in Phys., 334, Springer-Verlag, Berlin, (1989), 207-215. Zbl0991.49500MR1036070DOI10.1007/BFb0024945
  5. BELIK, P. - LUSKIN, M., A Total-Variation Surface Energy Model for Thin Films of Martensitic Cristals, Interfaces Free Bound., 4, n. 1 (2002), 71-88. Zbl1014.49013MR1877536DOI10.4171/IFB/53
  6. BHATTACHARYA, K. - JAMES, R.D., A Theory of Thin Films of Martensitic Materials with Applications to Microactuators, J. Mech. Phys. Solids, 47, n. 3 (1999). Zbl0960.74046MR1675215DOI10.1016/S0022-5096(98)00043-X
  7. BRAIDES, A. - FONSECA, I. - FRANCFORT, G., 3D-2D Asymptotic Analysis for Inhomogeneous Thin Films, Indiana Univ. Math. J., 49, n. 4 (2000), 1367-1404. Zbl0987.35020MR1836533DOI10.1512/iumj.2000.49.1822
  8. BRAIDES, A. - FONSECA, I. - LEONI, G., m a t h c a l A -quasiconvexity: relaxation and homogenization, ESAIM, Control Optim. Calc. Var., 5 (2000), 539-577. Zbl0971.35010MR1799330DOI10.1051/cocv:2000121
  9. BOCEA, M. - FONSECA, I., Equi-integrability Results for 3D-2D Dimension Reduction Problems, ESAIM: Control Optim. Calc. Var., 7 (2002), 443-470. Zbl1044.49010MR1925037DOI10.1051/cocv:2002063
  10. BOCEA, M. - FONSECA, I., A Young Measure Approach to a Nonlinear Membrane Model Involving the Bending Moment, Proc. Royal Soc. Edimb. (2004) to appear. Zbl1084.49012MR2099567DOI10.1017/S0308210500003516
  11. BUTTAZZO, G., Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics, 207. Harlow: Longman Scientific and Technical; New York: John Wiley and Sons. (1989). MR1020296
  12. CARBONE, L. - DE ARCANGELIS, R., Unbounded functionals in the calculus of variations. Representations, relaxation, and homogenization, Chapman and Hall/CRC Research Notes in Mathematics, 125Boca Raton, Chapman and Hall/CRC. xiii, (2002). MR1910459
  13. CIARLET, P.G., Mathematical elasticity. Vol. II. Theory of plates. Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, (1997). Zbl0888.73001MR1477663
  14. CIARLET, P.G. - DESTUYNDER, P., A Justification of the Two-Dimensional Linear Plate Model, J. Mécanique18, n. 2 (1979), 315-344. Zbl0415.73072MR533827
  15. CIARLETTA, M. - IESAN, D., Nonclassical Elastic SolidsPitman Research Notes in Mathematics, Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., 293, New York, (1993). MR1247456
  16. DAL MASO, G., An Introduction to Γ -convergence, Birkhauser, Boston (1993). Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  17. DAMLAMIAN, A. - VOGELIUS, M., Homogenization Limits of the Equations of Elasticity in Thin Domains, SIAM J. Math. Anal., 18 n. 2 (1987) 435-451. Zbl0614.73012MR876283DOI10.1137/0518034
  18. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) n. 6 (1975), 842-850. MR448194
  19. FONSECA, I. - MÜLLER, S., A-quasiconvexity, Lower Semicontinuity and Young measures, SIAM J. Math. Anal., 30 (6) (1999), 1355-1390. MR1718306DOI10.1137/S0036141098339885
  20. FREDDI, L. - PARONI, R., The energy density of martensitic thin films via dimension reduction, Interfaces Free Bound-.6, n. 4 (2004), 439-459. Zbl1072.35185MR2111565DOI10.4171/IFB/109
  21. FREDDI, L. - PARONI, R., A 3D-1D Young measure theory of an elastic string, Asymptotic Analysis, 39 n. 1 (2004), 61-89. Zbl1065.49010MR2083576
  22. FRIESECKE, G. - JAMES, R. D. - MÜLLER, S., Rigorous Derivation of nonlinear plate theory and geometric rigidity, C. R., Math., Acad. Sci. Paris, 334, No. 2 (2002), 173-178. Zbl1012.74043MR1885102DOI10.1016/S1631-073X(02)02133-7
  23. FRIESECKE, G. - JAMES, R.D. - MÜLLER, J., A Theorem on Geometric Rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., 55, No. 11 (2002), 1461-1506. Zbl1021.74024MR1916989DOI10.1002/cpa.10048
  24. FOX, D.D. - RAOULT, A. - SIMO, J. C., A Justification of Nonlinear Properly Invariant Plate Theories, Arch. Rational Mech. Anal., 124, n. 2 (1993), 157-199. Zbl0789.73039MR1237909DOI10.1007/BF00375134
  25. GARGIULO, G., ZAPPALE, E., A Remark on the Junction in a Thin Multi-Domain: the Non Convex Case, to appear on NoDEA. Zbl1132.74300MR2374206DOI10.1007/s00030-007-5046-8
  26. GAUDIELLO, A. - GUSTAFSSON, B. - LEFTER, C. - MOSSINO, J., Asymptotic analysis of a class of minimization problems in a thin multidomain, Calc. Var. Partial Differ. Equ., 15, No. 2 (2002), 181-202. Zbl1003.49013MR1930246DOI10.1007/s005260100114
  27. GAUDIELLO, A. - MONNEAU, R. - MOSSINO, J. - MURAT, F. - SILI, A., On the junction of elastic plates and beams, C. R., Math., Acad. Sci. Paris, 335, No. 8 (2002), 717-722. Zbl1032.74037MR1941655DOI10.1016/S1631-073X(02)02543-8
  28. GAUDIELLO, A. - ZAPPALE, E., Junction in a Thin Multidomain for a Fourth Order Problem, to appear on Math. Mod. Meth. Appl. Sc. Zbl1109.74032MR2287334DOI10.1142/S0218202506001753
  29. GIAQUINTA, M. - MODICA, G., Regularity Results for Some Classes of Higher Order Non-Linear Elliptic Systems, J. für reine and angew. Math., 311/312 (1979), 145-169. Zbl0409.35015MR549962
  30. JAMES, R. - KINDERLEHRER, D., Theory of Diffusionless Phase Transition, Lecture Notes in Physics, 334, Springer (1989), 51-84. Zbl0991.74504MR1036063DOI10.1007/BFb0024935
  31. KINDERLEHRER, D. - PEDREGAL, P., Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal., 115 (1991), 329-265. Zbl0754.49020MR1120852DOI10.1007/BF00375279
  32. KINDERLEHRER, D. - PEDREGAL, P., Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., 4 (1994), 59-90. Zbl0808.46046MR1274138DOI10.1007/BF02921593
  33. LE DRET, H. - RAOULT, A., The Nonlinear Membrane Model as Variational Limit of Nonlinear Three-Dimensional Elasticity, J. Math. Pures Appl., 74, n. 6 (1995), 549-578. Zbl0847.73025MR1365259
  34. LE DRET, H. - RAOULT, A., Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results, Arch. Rational Mech. Anal., 154, n. 2 (2000), 101-134. Zbl0969.74040MR1784962DOI10.1007/s002050000100
  35. LE DRET, H. - MEUNIER, N., Modeling Heterogeneous Wires Made of Martensitic Materials, C. R. Acad. Sci. Paris Sér. I. Math., 337, (2003), 143-147. Zbl1084.74038MR1998847DOI10.1016/S1631-073X(03)00285-1
  36. LE DRET, H. - MEUNIER, N., Modeling Heterogeneous Martensitic Wires, Preprint Laboratoire J. L. Lions, Univ. P. et M. Curie, Parigi, in preparation. Zbl1160.74395MR2126136DOI10.1142/S0218202505000406
  37. MORREY, C.B., Multiple Integrals in the Calculus of Variations, Springer-VerlagBerlin, 1966. Zbl0142.38701MR202511
  38. PEDREGAL, P., Parametrized measures and Variational Principles, Birkhäuser, Boston (1997). MR1452107DOI10.1007/978-3-0348-8886-8
  39. SANTOS, P.M. - ZAPPALE, E., Second Order Analysis for Thin Structures, Nonlinear Anal., Theory Methods Appl., 56A, n. 5 (2004), 679-713. Zbl1044.49014MR2036786DOI10.1016/j.na.2003.10.007
  40. SHU, Y.C., Heterogeneous Thin Films of Martensitic Materials, Arch. Rational Mech. Anal.153, n. 1 (2000), 39-90. Zbl0959.74043MR1772534DOI10.1007/s002050000088
  41. TOUPIN, R.A., Elastic Materials with Couple-Stresses, Arch. Rational Mech. Anal., 11, (1962), 386-414. Zbl0112.16805MR144512DOI10.1007/BF00253945
  42. TOUPIN, R.A., Theories of Elasticity with Couple Stress, Arch. Rational Mech. Anal., 17 (1964), 85-112. Zbl0131.22001MR169425DOI10.1007/BF00253050
  43. VALADIER, M., A course on Young Measures, Rend. Ist. Mat. Univ. Trieste, 26, Suppl., (1994), 349-394. MR1408956

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.