The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
Giuliano Gargiulo; Elvira Zappale
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 1, page 159-194
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGargiulo, Giuliano, and Zappale, Elvira. "The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach." Bollettino dell'Unione Matematica Italiana 10-B.1 (2007): 159-194. <http://eudml.org/doc/290356>.
@article{Gargiulo2007,
abstract = {Dimension reduction is used to derive the energy of non simple materials grade two thin films. Relaxation and $\Gamma$ convergence lead to a limit defined on a suitable space of bi-dimensional Young measures. The underlying ``deformation'' in the limit model takes into account the Cosserat theory.},
author = {Gargiulo, Giuliano, Zappale, Elvira},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {159-194},
publisher = {Unione Matematica Italiana},
title = {The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach},
url = {http://eudml.org/doc/290356},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Gargiulo, Giuliano
AU - Zappale, Elvira
TI - The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/2//
PB - Unione Matematica Italiana
VL - 10-B
IS - 1
SP - 159
EP - 194
AB - Dimension reduction is used to derive the energy of non simple materials grade two thin films. Relaxation and $\Gamma$ convergence lead to a limit defined on a suitable space of bi-dimensional Young measures. The underlying ``deformation'' in the limit model takes into account the Cosserat theory.
LA - eng
UR - http://eudml.org/doc/290356
ER -
References
top- ACERBI, E. - BUTTAZZO, G., PERCIVALE, D., A Variational Definition of the Strain Energy for an Elastic String, J. Elasticity, 25, n. 2 (1991), 137-148. Zbl0734.73094MR1111364DOI10.1007/BF00042462
- ANTMAN, S. S., Nonlinear Problems in Elasticity, Applied Mathemathical Science, 107, Springer Verlag, New York, (1995). Zbl0820.73002MR1323857DOI10.1007/978-1-4757-4147-6
- ANZELLOTTI, - BALDO, S. - PERCIVALE, D., Dimension reduction in variational problems, asymptotic development in -convergence and thin strucutures in elasticity, Asymptot. Anal., 9, No. 1 (1994), 61-100. Zbl0811.49020MR1285017
- BALL, J., A version of the fundamental theorem for Young measures, PDE's and Continuum Models of Phase Transition, M. RASCLE, D. SERRE - M. SLEMROD, eds., Lecture Notes in Phys., 334, Springer-Verlag, Berlin, (1989), 207-215. Zbl0991.49500MR1036070DOI10.1007/BFb0024945
- BELIK, P. - LUSKIN, M., A Total-Variation Surface Energy Model for Thin Films of Martensitic Cristals, Interfaces Free Bound., 4, n. 1 (2002), 71-88. Zbl1014.49013MR1877536DOI10.4171/IFB/53
- BHATTACHARYA, K. - JAMES, R.D., A Theory of Thin Films of Martensitic Materials with Applications to Microactuators, J. Mech. Phys. Solids, 47, n. 3 (1999). Zbl0960.74046MR1675215DOI10.1016/S0022-5096(98)00043-X
- BRAIDES, A. - FONSECA, I. - FRANCFORT, G., 3D-2D Asymptotic Analysis for Inhomogeneous Thin Films, Indiana Univ. Math. J., 49, n. 4 (2000), 1367-1404. Zbl0987.35020MR1836533DOI10.1512/iumj.2000.49.1822
- BRAIDES, A. - FONSECA, I. - LEONI, G., -quasiconvexity: relaxation and homogenization, ESAIM, Control Optim. Calc. Var., 5 (2000), 539-577. Zbl0971.35010MR1799330DOI10.1051/cocv:2000121
- BOCEA, M. - FONSECA, I., Equi-integrability Results for 3D-2D Dimension Reduction Problems, ESAIM: Control Optim. Calc. Var., 7 (2002), 443-470. Zbl1044.49010MR1925037DOI10.1051/cocv:2002063
- BOCEA, M. - FONSECA, I., A Young Measure Approach to a Nonlinear Membrane Model Involving the Bending Moment, Proc. Royal Soc. Edimb. (2004) to appear. Zbl1084.49012MR2099567DOI10.1017/S0308210500003516
- BUTTAZZO, G., Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics, 207. Harlow: Longman Scientific and Technical; New York: John Wiley and Sons. (1989). MR1020296
- CARBONE, L. - DE ARCANGELIS, R., Unbounded functionals in the calculus of variations. Representations, relaxation, and homogenization, Chapman and Hall/CRC Research Notes in Mathematics, 125Boca Raton, Chapman and Hall/CRC. xiii, (2002). MR1910459
- CIARLET, P.G., Mathematical elasticity. Vol. II. Theory of plates. Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, (1997). Zbl0888.73001MR1477663
- CIARLET, P.G. - DESTUYNDER, P., A Justification of the Two-Dimensional Linear Plate Model, J. Mécanique18, n. 2 (1979), 315-344. Zbl0415.73072MR533827
- CIARLETTA, M. - IESAN, D., Nonclassical Elastic SolidsPitman Research Notes in Mathematics, Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., 293, New York, (1993). MR1247456
- DAL MASO, G., An Introduction to -convergence, Birkhauser, Boston (1993). Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- DAMLAMIAN, A. - VOGELIUS, M., Homogenization Limits of the Equations of Elasticity in Thin Domains, SIAM J. Math. Anal., 18 n. 2 (1987) 435-451. Zbl0614.73012MR876283DOI10.1137/0518034
- DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) n. 6 (1975), 842-850. MR448194
- FONSECA, I. - MÜLLER, S., A-quasiconvexity, Lower Semicontinuity and Young measures, SIAM J. Math. Anal., 30 (6) (1999), 1355-1390. MR1718306DOI10.1137/S0036141098339885
- FREDDI, L. - PARONI, R., The energy density of martensitic thin films via dimension reduction, Interfaces Free Bound-.6, n. 4 (2004), 439-459. Zbl1072.35185MR2111565DOI10.4171/IFB/109
- FREDDI, L. - PARONI, R., A 3D-1D Young measure theory of an elastic string, Asymptotic Analysis, 39 n. 1 (2004), 61-89. Zbl1065.49010MR2083576
- FRIESECKE, G. - JAMES, R. D. - MÜLLER, S., Rigorous Derivation of nonlinear plate theory and geometric rigidity, C. R., Math., Acad. Sci. Paris, 334, No. 2 (2002), 173-178. Zbl1012.74043MR1885102DOI10.1016/S1631-073X(02)02133-7
- FRIESECKE, G. - JAMES, R.D. - MÜLLER, J., A Theorem on Geometric Rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., 55, No. 11 (2002), 1461-1506. Zbl1021.74024MR1916989DOI10.1002/cpa.10048
- FOX, D.D. - RAOULT, A. - SIMO, J. C., A Justification of Nonlinear Properly Invariant Plate Theories, Arch. Rational Mech. Anal., 124, n. 2 (1993), 157-199. Zbl0789.73039MR1237909DOI10.1007/BF00375134
- GARGIULO, G., ZAPPALE, E., A Remark on the Junction in a Thin Multi-Domain: the Non Convex Case, to appear on NoDEA. Zbl1132.74300MR2374206DOI10.1007/s00030-007-5046-8
- GAUDIELLO, A. - GUSTAFSSON, B. - LEFTER, C. - MOSSINO, J., Asymptotic analysis of a class of minimization problems in a thin multidomain, Calc. Var. Partial Differ. Equ., 15, No. 2 (2002), 181-202. Zbl1003.49013MR1930246DOI10.1007/s005260100114
- GAUDIELLO, A. - MONNEAU, R. - MOSSINO, J. - MURAT, F. - SILI, A., On the junction of elastic plates and beams, C. R., Math., Acad. Sci. Paris, 335, No. 8 (2002), 717-722. Zbl1032.74037MR1941655DOI10.1016/S1631-073X(02)02543-8
- GAUDIELLO, A. - ZAPPALE, E., Junction in a Thin Multidomain for a Fourth Order Problem, to appear on Math. Mod. Meth. Appl. Sc. Zbl1109.74032MR2287334DOI10.1142/S0218202506001753
- GIAQUINTA, M. - MODICA, G., Regularity Results for Some Classes of Higher Order Non-Linear Elliptic Systems, J. für reine and angew. Math., 311/312 (1979), 145-169. Zbl0409.35015MR549962
- JAMES, R. - KINDERLEHRER, D., Theory of Diffusionless Phase Transition, Lecture Notes in Physics, 334, Springer (1989), 51-84. Zbl0991.74504MR1036063DOI10.1007/BFb0024935
- KINDERLEHRER, D. - PEDREGAL, P., Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal., 115 (1991), 329-265. Zbl0754.49020MR1120852DOI10.1007/BF00375279
- KINDERLEHRER, D. - PEDREGAL, P., Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., 4 (1994), 59-90. Zbl0808.46046MR1274138DOI10.1007/BF02921593
- LE DRET, H. - RAOULT, A., The Nonlinear Membrane Model as Variational Limit of Nonlinear Three-Dimensional Elasticity, J. Math. Pures Appl., 74, n. 6 (1995), 549-578. Zbl0847.73025MR1365259
- LE DRET, H. - RAOULT, A., Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results, Arch. Rational Mech. Anal., 154, n. 2 (2000), 101-134. Zbl0969.74040MR1784962DOI10.1007/s002050000100
- LE DRET, H. - MEUNIER, N., Modeling Heterogeneous Wires Made of Martensitic Materials, C. R. Acad. Sci. Paris Sér. I. Math., 337, (2003), 143-147. Zbl1084.74038MR1998847DOI10.1016/S1631-073X(03)00285-1
- LE DRET, H. - MEUNIER, N., Modeling Heterogeneous Martensitic Wires, Preprint Laboratoire J. L. Lions, Univ. P. et M. Curie, Parigi, in preparation. Zbl1160.74395MR2126136DOI10.1142/S0218202505000406
- MORREY, C.B., Multiple Integrals in the Calculus of Variations, Springer-VerlagBerlin, 1966. Zbl0142.38701MR202511
- PEDREGAL, P., Parametrized measures and Variational Principles, Birkhäuser, Boston (1997). MR1452107DOI10.1007/978-3-0348-8886-8
- SANTOS, P.M. - ZAPPALE, E., Second Order Analysis for Thin Structures, Nonlinear Anal., Theory Methods Appl., 56A, n. 5 (2004), 679-713. Zbl1044.49014MR2036786DOI10.1016/j.na.2003.10.007
- SHU, Y.C., Heterogeneous Thin Films of Martensitic Materials, Arch. Rational Mech. Anal.153, n. 1 (2000), 39-90. Zbl0959.74043MR1772534DOI10.1007/s002050000088
- TOUPIN, R.A., Elastic Materials with Couple-Stresses, Arch. Rational Mech. Anal., 11, (1962), 386-414. Zbl0112.16805MR144512DOI10.1007/BF00253945
- TOUPIN, R.A., Theories of Elasticity with Couple Stress, Arch. Rational Mech. Anal., 17 (1964), 85-112. Zbl0131.22001MR169425DOI10.1007/BF00253050
- VALADIER, M., A course on Young Measures, Rend. Ist. Mat. Univ. Trieste, 26, Suppl., (1994), 349-394. MR1408956
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.