Equi-integrability results for 3D-2D dimension reduction problems
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 7, page 443-470
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBocea, Marian, and Fonseca, Irene. "Equi-integrability results for 3D-2D dimension reduction problems." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 443-470. <http://eudml.org/doc/245996>.
@article{Bocea2002,
abstract = {3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients $\left( \nabla _\{\alpha \}u_\{\varepsilon \}\big | \frac\{1\}\{\{\varepsilon \}\}\nabla _3 u_\{\varepsilon \}\right) $ bounded in $L^p (\Omega ; \mathbb \{R\}^9 ), \ 1<p<+\infty .$ Here it is shown that, up to a subsequence, $u_\{\varepsilon \}$ may be decomposed as $w_\{\varepsilon \}+ z_\{\varepsilon \},$ where $z_\{\varepsilon \}$ carries all the concentration effects, i.e. $\left\lbrace \left| \left( \nabla _\{\alpha \}w_\{\varepsilon \}| \frac\{1\}\{\{\varepsilon \}\}\nabla _3 w_\{\varepsilon \}\right) \right| ^\{p\} \right\rbrace $ is equi-integrable, and $w_\{\varepsilon \}$ captures the oscillatory behavior, i.e. $z_\{\varepsilon \}\rightarrow 0$ in measure. In addition, if $\lbrace u_\{\varepsilon \}\rbrace $ is a recovering sequence then $z_\{\varepsilon \}= z_\{\varepsilon \}(x_\alpha )$ nearby $\partial \Omega .$},
author = {Bocea, Marian, Fonseca, Irene},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {equi-integrability; dimension reduction; lower semicontinuity; maximal function; oscillations; concentrations; quasiconvexity},
language = {eng},
pages = {443-470},
publisher = {EDP-Sciences},
title = {Equi-integrability results for 3D-2D dimension reduction problems},
url = {http://eudml.org/doc/245996},
volume = {7},
year = {2002},
}
TY - JOUR
AU - Bocea, Marian
AU - Fonseca, Irene
TI - Equi-integrability results for 3D-2D dimension reduction problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 443
EP - 470
AB - 3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients $\left( \nabla _{\alpha }u_{\varepsilon }\big | \frac{1}{{\varepsilon }}\nabla _3 u_{\varepsilon }\right) $ bounded in $L^p (\Omega ; \mathbb {R}^9 ), \ 1<p<+\infty .$ Here it is shown that, up to a subsequence, $u_{\varepsilon }$ may be decomposed as $w_{\varepsilon }+ z_{\varepsilon },$ where $z_{\varepsilon }$ carries all the concentration effects, i.e. $\left\lbrace \left| \left( \nabla _{\alpha }w_{\varepsilon }| \frac{1}{{\varepsilon }}\nabla _3 w_{\varepsilon }\right) \right| ^{p} \right\rbrace $ is equi-integrable, and $w_{\varepsilon }$ captures the oscillatory behavior, i.e. $z_{\varepsilon }\rightarrow 0$ in measure. In addition, if $\lbrace u_{\varepsilon }\rbrace $ is a recovering sequence then $z_{\varepsilon }= z_{\varepsilon }(x_\alpha )$ nearby $\partial \Omega .$
LA - eng
KW - equi-integrability; dimension reduction; lower semicontinuity; maximal function; oscillations; concentrations; quasiconvexity
UR - http://eudml.org/doc/245996
ER -
References
top- [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational. Mech. Anal. 86 (1984) 125-145. Zbl0565.49010MR751305
- [2] E. Acerbi and N. Fusco, An approximation lemma for functions, in Material Instabilities in Continuum Mechanics and Related Mathematical Problems, edited by J.M. Ball. Heriot–Watt University, Oxford (1988). Zbl0644.46026
- [3] E. Anzelotti, S. Baldo and D. Percivale, Dimensional reduction in variational problems, asymptotic developments in -convergence, and thin structures in elasticity. Asymptot. Anal. 9 (1994) 61-100. Zbl0811.49020MR1285017
- [4] E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22 (1984) 570-598. Zbl0549.49005MR747970
- [5] J.M. Ball, A version of the fundamental theorem for Young mesures, in PDE’s and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag, Berlin, Lecture Notes in Phys. 344 (1989) 207-215. Zbl0991.49500
- [6] H. Berliocchi and J.-M. Lasry, Intégrands normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. Zbl0282.49041MR344980
- [7] K. Bhattacharya and A. Braides, Thin films with many small cracks. Preprint (2000). Zbl1011.74042MR1898090
- [8] K. Bhattacharya, I. Fonseca and G. Francfort, An asymptotic study of the debonding of thin films. Arch. Rational. Mech. Anal. 161 (2002) 205-229. Zbl0999.74079MR1894591
- [9] K. Bhattacharya and R.D. James, A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47 (1999) 531-576. Zbl0960.74046MR1675215
- [10] A. Braides, Private communication.
- [11] A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49 (2000) 1367-1404. Zbl0987.35020MR1836533
- [12] A. Braides and I. Fonseca, Brittle thin films. Appl. Math. Optim. 44 (2001) 299-323. Zbl0999.49012MR1851742
- [13] S. Conti, I. Fonseca and G. Leoni, -convergence result for the two-gradient theory of phase transitions, Preprint 01-CNA-008. Center for Nonlinear Analysis, Carnegie Mellon University (2001). Comm. Pure Applied Math. (to appear). Zbl1029.49040MR1894158
- [14] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag (1989). Zbl0703.49001MR990890
- [15] I. Fonseca and G. Francfort, On the inadequacy of scaling of linear elasticity for 3D-2D asymptotics in a nonlinear setting. J. Math. Pures Appl. 80 (2001) 547-562. Zbl1029.35216MR1831435
- [16] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations with Applications to Nonlinear Continuum Physics. Springer-Verlag (to appear). Zbl1153.49001MR2341508
- [17] I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736-756. Zbl0920.49009MR1617712
- [18] D.D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rational. Mech. Anal. 124 (1993) 157-199. Zbl0789.73039MR1237909
- [19] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. Arch. Rational. Mech. Anal. 119 (1992) 129-143. Zbl0766.46016MR1176362
- [20] D. Kinderlehrer and P. Pedregal, Characterizations of Young mesures generated by gradients. Arch. Rational. Mech. Anal. 115 (1991) 329-365. Zbl0754.49020MR1120852
- [21] D. Kinderlehrer and P. Pedregal, Gradient Young mesures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59-90. Zbl0808.46046MR1274138
- [22] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute, Technical University of Denmark, Mat-Report No. 1994-34 (1994).
- [23] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999) 653-710. Zbl0924.49012MR1686943
- [24] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. Zbl0847.73025MR1365259
- [25] H. Le Dret and A. Raoult, Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational. Mech. Anal. 154 (2000) 101-134. Zbl0969.74040MR1784962
- [26] F.C. Liu, A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26 (1997) 645-651. Zbl0368.46036MR450488
- [27] P. Pedregal, Parametrized mesures and Variational Principles. Birkhäuser, Boston (1997). Zbl0879.49017MR1452107
- [28] E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press (1970). Zbl0207.13501MR290095
- [29] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, edited by R. Knops. Longman, Harlow, Pitman Res. Notes Math. Ser. 39 (1979) 136-212. Zbl0437.35004
- [30] L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, edited by J.M. Ball. Riedel (1983). Zbl0536.35003MR725524
- [31] L. Tartar, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer-Verlag, Berlin, Lecture Notes in Phys. 195 (1994) 384-412. Zbl0595.35012MR755737
- [32] Y.C. Shu, Heterogeneous thin films of martensitic materials. Arch. Rational. Mech. Anal. 153 (2000) 39-90. Zbl0959.74043MR1772534
- [33] L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Lettres de Varsovie, Classe III 30 (1937) 212-234. Zbl0019.21901JFM63.1064.01
- [34] L.C. Young, Lectures on the calculus of variations and optimal control theory. W.B. Saunders (1969). Zbl0177.37801MR259704
- [35] W.P. Ziemer, Weakly Differentiable Functions. Sobolev spaces and functions of bounded variation. Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685
Citations in EuDML Documents
top- Jean-François Babadjian, Gilles A. Francfort, Spatial heterogeneity in 3D-2D dimensional reduction
- Jean-François Babadjian, Gilles A. Francfort, Spatial heterogeneity in 3D-2D dimensional reduction
- Giuliano Gargiulo, Elvira Zappale, The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.