Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea; Irene Fonseca

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 7, page 443-470
  • ISSN: 1292-8119

Abstract

top
3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

How to cite

top

Bocea, Marian, and Fonseca, Irene. "Equi-integrability results for 3D-2D dimension reduction problems." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 443-470. <http://eudml.org/doc/245996>.

@article{Bocea2002,
abstract = {3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients $\left( \nabla _\{\alpha \}u_\{\varepsilon \}\big | \frac\{1\}\{\{\varepsilon \}\}\nabla _3 u_\{\varepsilon \}\right) $ bounded in $L^p (\Omega ; \mathbb \{R\}^9 ), \ 1&lt;p&lt;+\infty .$ Here it is shown that, up to a subsequence, $u_\{\varepsilon \}$ may be decomposed as $w_\{\varepsilon \}+ z_\{\varepsilon \},$ where $z_\{\varepsilon \}$ carries all the concentration effects, i.e. $\left\lbrace \left| \left( \nabla _\{\alpha \}w_\{\varepsilon \}| \frac\{1\}\{\{\varepsilon \}\}\nabla _3 w_\{\varepsilon \}\right) \right| ^\{p\} \right\rbrace $ is equi-integrable, and $w_\{\varepsilon \}$ captures the oscillatory behavior, i.e. $z_\{\varepsilon \}\rightarrow 0$ in measure. In addition, if $\lbrace u_\{\varepsilon \}\rbrace $ is a recovering sequence then $z_\{\varepsilon \}= z_\{\varepsilon \}(x_\alpha )$ nearby $\partial \Omega .$},
author = {Bocea, Marian, Fonseca, Irene},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {equi-integrability; dimension reduction; lower semicontinuity; maximal function; oscillations; concentrations; quasiconvexity},
language = {eng},
pages = {443-470},
publisher = {EDP-Sciences},
title = {Equi-integrability results for 3D-2D dimension reduction problems},
url = {http://eudml.org/doc/245996},
volume = {7},
year = {2002},
}

TY - JOUR
AU - Bocea, Marian
AU - Fonseca, Irene
TI - Equi-integrability results for 3D-2D dimension reduction problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 443
EP - 470
AB - 3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients $\left( \nabla _{\alpha }u_{\varepsilon }\big | \frac{1}{{\varepsilon }}\nabla _3 u_{\varepsilon }\right) $ bounded in $L^p (\Omega ; \mathbb {R}^9 ), \ 1&lt;p&lt;+\infty .$ Here it is shown that, up to a subsequence, $u_{\varepsilon }$ may be decomposed as $w_{\varepsilon }+ z_{\varepsilon },$ where $z_{\varepsilon }$ carries all the concentration effects, i.e. $\left\lbrace \left| \left( \nabla _{\alpha }w_{\varepsilon }| \frac{1}{{\varepsilon }}\nabla _3 w_{\varepsilon }\right) \right| ^{p} \right\rbrace $ is equi-integrable, and $w_{\varepsilon }$ captures the oscillatory behavior, i.e. $z_{\varepsilon }\rightarrow 0$ in measure. In addition, if $\lbrace u_{\varepsilon }\rbrace $ is a recovering sequence then $z_{\varepsilon }= z_{\varepsilon }(x_\alpha )$ nearby $\partial \Omega .$
LA - eng
KW - equi-integrability; dimension reduction; lower semicontinuity; maximal function; oscillations; concentrations; quasiconvexity
UR - http://eudml.org/doc/245996
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational. Mech. Anal. 86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] E. Acerbi and N. Fusco, An approximation lemma for W 1 , p functions, in Material Instabilities in Continuum Mechanics and Related Mathematical Problems, edited by J.M. Ball. Heriot–Watt University, Oxford (1988). Zbl0644.46026
  3. [3] E. Anzelotti, S. Baldo and D. Percivale, Dimensional reduction in variational problems, asymptotic developments in Γ -convergence, and thin structures in elasticity. Asymptot. Anal. 9 (1994) 61-100. Zbl0811.49020MR1285017
  4. [4] E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22 (1984) 570-598. Zbl0549.49005MR747970
  5. [5] J.M. Ball, A version of the fundamental theorem for Young mesures, in PDE’s and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag, Berlin, Lecture Notes in Phys. 344 (1989) 207-215. Zbl0991.49500
  6. [6] H. Berliocchi and J.-M. Lasry, Intégrands normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. Zbl0282.49041MR344980
  7. [7] K. Bhattacharya and A. Braides, Thin films with many small cracks. Preprint (2000). Zbl1011.74042MR1898090
  8. [8] K. Bhattacharya, I. Fonseca and G. Francfort, An asymptotic study of the debonding of thin films. Arch. Rational. Mech. Anal. 161 (2002) 205-229. Zbl0999.74079MR1894591
  9. [9] K. Bhattacharya and R.D. James, A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47 (1999) 531-576. Zbl0960.74046MR1675215
  10. [10] A. Braides, Private communication. 
  11. [11] A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49 (2000) 1367-1404. Zbl0987.35020MR1836533
  12. [12] A. Braides and I. Fonseca, Brittle thin films. Appl. Math. Optim. 44 (2001) 299-323. Zbl0999.49012MR1851742
  13. [13] S. Conti, I. Fonseca and G. Leoni, A Γ -convergence result for the two-gradient theory of phase transitions, Preprint 01-CNA-008. Center for Nonlinear Analysis, Carnegie Mellon University (2001). Comm. Pure Applied Math. (to appear). Zbl1029.49040MR1894158
  14. [14] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag (1989). Zbl0703.49001MR990890
  15. [15] I. Fonseca and G. Francfort, On the inadequacy of scaling of linear elasticity for 3D-2D asymptotics in a nonlinear setting. J. Math. Pures Appl. 80 (2001) 547-562. Zbl1029.35216MR1831435
  16. [16] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations with Applications to Nonlinear Continuum Physics. Springer-Verlag (to appear). Zbl1153.49001MR2341508
  17. [17] I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736-756. Zbl0920.49009MR1617712
  18. [18] D.D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rational. Mech. Anal. 124 (1993) 157-199. Zbl0789.73039MR1237909
  19. [19] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. Arch. Rational. Mech. Anal. 119 (1992) 129-143. Zbl0766.46016MR1176362
  20. [20] D. Kinderlehrer and P. Pedregal, Characterizations of Young mesures generated by gradients. Arch. Rational. Mech. Anal. 115 (1991) 329-365. Zbl0754.49020MR1120852
  21. [21] D. Kinderlehrer and P. Pedregal, Gradient Young mesures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59-90. Zbl0808.46046MR1274138
  22. [22] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute, Technical University of Denmark, Mat-Report No. 1994-34 (1994). 
  23. [23] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999) 653-710. Zbl0924.49012MR1686943
  24. [24] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. Zbl0847.73025MR1365259
  25. [25] H. Le Dret and A. Raoult, Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational. Mech. Anal. 154 (2000) 101-134. Zbl0969.74040MR1784962
  26. [26] F.C. Liu, A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26 (1997) 645-651. Zbl0368.46036MR450488
  27. [27] P. Pedregal, Parametrized mesures and Variational Principles. Birkhäuser, Boston (1997). Zbl0879.49017MR1452107
  28. [28] E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press (1970). Zbl0207.13501MR290095
  29. [29] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, edited by R. Knops. Longman, Harlow, Pitman Res. Notes Math. Ser. 39 (1979) 136-212. Zbl0437.35004
  30. [30] L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, edited by J.M. Ball. Riedel (1983). Zbl0536.35003MR725524
  31. [31] L. Tartar, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer-Verlag, Berlin, Lecture Notes in Phys. 195 (1994) 384-412. Zbl0595.35012MR755737
  32. [32] Y.C. Shu, Heterogeneous thin films of martensitic materials. Arch. Rational. Mech. Anal. 153 (2000) 39-90. Zbl0959.74043MR1772534
  33. [33] L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Lettres de Varsovie, Classe III 30 (1937) 212-234. Zbl0019.21901JFM63.1064.01
  34. [34] L.C. Young, Lectures on the calculus of variations and optimal control theory. W.B. Saunders (1969). Zbl0177.37801MR259704
  35. [35] W.P. Ziemer, Weakly Differentiable Functions. Sobolev spaces and functions of bounded variation. Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.