An Elementary Proof of the Exponential Conditioning of Real Vandermonde Matrices

Stefano Serra Capizzano

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 761-768
  • ISSN: 0392-4041

Abstract

top
We provide and discuss an elementary proof of the exponential con- ditioning of real Vandermonde matrices which can be easily given in undergraduate courses: we exclusively use the definition of conditioning and the sup-norm formula on [ - 1 , 1 ] for Chebyshev polynomials of first kind. The same proof idea works virtually unchanged for the famous Hilbert matrix.

How to cite

top

Serra Capizzano, Stefano. "An Elementary Proof of the Exponential Conditioning of Real Vandermonde Matrices." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 761-768. <http://eudml.org/doc/290357>.

@article{SerraCapizzano2007,
abstract = {We provide and discuss an elementary proof of the exponential con- ditioning of real Vandermonde matrices which can be easily given in undergraduate courses: we exclusively use the definition of conditioning and the sup-norm formula on $[-1, 1]$ for Chebyshev polynomials of first kind. The same proof idea works virtually unchanged for the famous Hilbert matrix.},
author = {Serra Capizzano, Stefano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {761-768},
publisher = {Unione Matematica Italiana},
title = {An Elementary Proof of the Exponential Conditioning of Real Vandermonde Matrices},
url = {http://eudml.org/doc/290357},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Serra Capizzano, Stefano
TI - An Elementary Proof of the Exponential Conditioning of Real Vandermonde Matrices
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 761
EP - 768
AB - We provide and discuss an elementary proof of the exponential con- ditioning of real Vandermonde matrices which can be easily given in undergraduate courses: we exclusively use the definition of conditioning and the sup-norm formula on $[-1, 1]$ for Chebyshev polynomials of first kind. The same proof idea works virtually unchanged for the famous Hilbert matrix.
LA - eng
UR - http://eudml.org/doc/290357
ER -

References

top
  1. BECKERMANN, B., The condition number of real Vandermonde, Krylov and positive definite Hankel matrices, Numer. Math., 85-4 (2000). Zbl0965.15003MR1771780DOI10.1007/PL00005392
  2. GAUTSCHI, W. - INGLESE, G., Lower bounds for the condition number of Vandermonde matrices, Numer. Math., 52 (1988), 241-250. Zbl0646.15003MR929571DOI10.1007/BF01398878
  3. LI, R. C., Vandermonde Matrices with Chebyshev Nodes, Technical Report, 2005-02, Department of Mathematics, University of Kentucky, January 2005. Linear Algebra Appl., to appear. MR2398120DOI10.1016/j.laa.2007.10.029
  4. MASON, J. - HANDSCOMB, D., Chebyshev polynomials, Chapman and Hall, Boca Raton, 2003. MR1937591
  5. TAYLOR, J., The condition of Gram matrices and related problems, Proc. Royal Soc. Edinburgh, 80A-1/2 (1978), 45-56. MR529568DOI10.1017/S030821050001012X
  6. TODD, J., The condition of certain matrices. II, Arch. Math., 5 (1954), 249-257. Zbl0055.35502MR66033DOI10.1007/BF01898363
  7. TYRTYSHNIKOV, E., How bad are Hankel matrices?, Numer. Math., 67-2 (1994), 261-269. Zbl0797.65039MR1262784DOI10.1007/s002110050027
  8. WILF, H., Finite sections of some classical inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, 1970. Zbl0199.38301MR271762

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.