Displaying similar documents to “An Elementary Proof of the Exponential Conditioning of Real Vandermonde Matrices”

Nested matrices and inverse M -matrices

Jeffrey L. Stuart (2015)

Czechoslovak Mathematical Journal

Similarity:

Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the L U - and Q R -factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse M -matrices with symmetric, irreducible, tridiagonal inverses.

Chebyshev polynomials and Pell equations over finite fields

Boaz Cohen (2021)

Czechoslovak Mathematical Journal

Similarity:

We shall describe how to construct a fundamental solution for the Pell equation x 2 - m y 2 = 1 over finite fields of characteristic p 2 . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation x 2 - m y 2 = n .

On some properties of Chebyshev polynomials

Hacène Belbachir, Farid Bencherif (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Letting T n (resp. U n ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences ( X k T n - k ) k and ( X k U n - k ) k for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space n [ X ] formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also T n and U n admit remarkableness integer coordinates on each of the two basis.

On the matrix negative Pell equation

Aleksander Grytczuk, Izabela Kurzydło (2009)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

Exponential bounds for noncommuting systems of matrices

Brian Jefferies (2001)

Studia Mathematica

Similarity:

It is shown that a finite system T of matrices whose real linear combinations have real spectrum satisfies a bound of the form | | e i T , ζ | | C ( 1 + | ζ | ) s e r | ζ | . The proof appeals to the monogenic functional calculus.

Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

Daniel Uzcátegui Contreras, Dardo Goyeneche, Ondřej Turek, Zuzana Václavíková (2021)

Communications in Mathematics

Similarity:

It is known that a real symmetric circulant matrix with diagonal entries d 0 , off-diagonal entries ± 1 and orthogonal rows exists only of order 2 d + 2 (and trivially of order 1 ) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider...

Characterization of functions whose forward differences are exponential polynomials

J. M. Almira (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given { h 1 , , h t } a finite subset of d , we study the continuous complex valued functions and the Schwartz complex valued distributions f defined on d with the property that the forward differences Δ h k m k f are (in distributional sense) continuous exponential polynomials for some natural numbers m 1 , , m t .

A method to rigorously enclose eigenpairs of complex interval matrices

Castelli, Roberto, Lessard, Jean-Philippe

Similarity:

In this paper, a rigorous computational method to enclose eigenpairs of complex interval matrices is proposed. Each eigenpair x = ( λ , ) is found by solving a nonlinear equation of the form f ( x ) = 0 via a contraction argument. The set-up of the method relies on the notion of r a d i i p o l y n o m i a l s , which provide an efficient mean of determining a domain on which the contraction mapping theorem is applicable.

Explicit extension maps in intersections of non-quasi-analytic classes

Jean Schmets, Manuel Valdivia (2005)

Annales Polonici Mathematici

Similarity:

We deal with projective limits of classes of functions and prove that: (a) the Chebyshev polynomials constitute an absolute Schauder basis of the nuclear Fréchet spaces ( ) ( [ - 1 , 1 ] r ) ; (b) there is no continuous linear extension map from Λ ( ) ( r ) into ( ) ( r ) ; (c) under some additional assumption on , there is an explicit extension map from ( ) ( [ - 1 , 1 ] r ) into ( ) ( [ - 2 , 2 ] r ) by use of a modification of the Chebyshev polynomials. These results extend the corresponding ones obtained by Beaugendre in [1] and [2].

Some results on derangement polynomials

Mehdi Hassani, Hossein Moshtagh, Mohammad Ghorbani (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study moments of the difference D n ( x ) - x n n ! e - 1 / x concerning derangement polynomials D n ( x ) . For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for x > 0 . For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.

Chebyshev Distance

Roland Coghetto (2016)

Formalized Mathematics

Similarity:

In [21], Marco Riccardi formalized that ℝN-basis n is a basis (in the algebraic sense defined in [26]) of [...] ℰTn T n and in [20] he has formalized that [...] ℰTn T n is second-countable, we build (in the topological sense defined in [23]) a denumerable base of [...] ℰTn T n . Then we introduce the n-dimensional intervals (interval in n-dimensional Euclidean space, pavé (borné) de ℝn [16], semi-intervalle (borné) de ℝn [22]). We conclude with the definition of Chebyshev distance [11]. ...

Optimality of Chebyshev bounds for Beurling generalized numbers

Harold G. Diamond, Wen-Bin Zhang (2013)

Acta Arithmetica

Similarity:

If the counting function N(x) of integers of a Beurling generalized number system satisfies both 1 x - 2 | N ( x ) - A x | d x < and x - 1 ( l o g x ) ( N ( x ) - A x ) = O ( 1 ) , then the counting function π(x) of the primes of this system is known to satisfy the Chebyshev bound π(x) ≪ x/logx. Let f(x) increase to infinity arbitrarily slowly. We give a construction showing that 1 | N ( x ) - A x | x - 2 d x < and x - 1 ( l o g x ) ( N ( x ) - A x ) = O ( f ( x ) ) do not imply the Chebyshev bound.

Vandermonde nets

Roswitha Hofer, Harald Niederreiter (2014)

Acta Arithmetica

Similarity:

The second-named author recently suggested identifying the generating matrices of a digital (t,m,s)-net over the finite field q with an s × m matrix C over q m . More exactly, the entries of C are determined by interpreting the rows of the generating matrices as elements of q m . This paper introduces so-called Vandermonde nets, which correspond to Vandermonde-type matrices C, and discusses the quality parameter and the discrepancy of such nets. The methods that have been successfully used...