On the Dirichlet Problem with Orlicz Boundary Data
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 661-679
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topZecca, Gabriella. "On the Dirichlet Problem with Orlicz Boundary Data." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 661-679. <http://eudml.org/doc/290386>.
@article{Zecca2007,
abstract = {Let us consider a Young's function $\Phi \colon \mathbb\{R\}^+ \to \mathbb\{R\}^+$ satisfying the $\Delta_2$ condition together with its complementary function $\Psi$, and let us consider the Dirichlet problem for a second order elliptic operator in divergence form: \begin\{equation*\} \begin\{cases\} Lu=0 & \text\{in \} B\\ u\_\{|\partial B\}=f \end\{cases\} \end\{equation*\}$B$ the unit ball of $\mathbb\{R\}^n$. In this paper we give a necessary and sufficient condition for the $L^\phi$-solvability of the problem, where $L^\phi$ is the Orlicz Space generated by the function $\Phi$. This means solvability for $f \in L^\Phi$ in the sense of [5], [8], where the case $\Phi(t) = t^p$ is treated.},
author = {Zecca, Gabriella},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {661-679},
publisher = {Unione Matematica Italiana},
title = {On the Dirichlet Problem with Orlicz Boundary Data},
url = {http://eudml.org/doc/290386},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Zecca, Gabriella
TI - On the Dirichlet Problem with Orlicz Boundary Data
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 661
EP - 679
AB - Let us consider a Young's function $\Phi \colon \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the $\Delta_2$ condition together with its complementary function $\Psi$, and let us consider the Dirichlet problem for a second order elliptic operator in divergence form: \begin{equation*} \begin{cases} Lu=0 & \text{in } B\\ u_{|\partial B}=f \end{cases} \end{equation*}$B$ the unit ball of $\mathbb{R}^n$. In this paper we give a necessary and sufficient condition for the $L^\phi$-solvability of the problem, where $L^\phi$ is the Orlicz Space generated by the function $\Phi$. This means solvability for $f \in L^\Phi$ in the sense of [5], [8], where the case $\Phi(t) = t^p$ is treated.
LA - eng
UR - http://eudml.org/doc/290386
ER -
References
top- BOYD, D. W., Indices of function spaces and their relationship to interpolation, Canad. J. Math., 21 (1969), 1245-1254. Zbl0184.34802MR412788DOI10.4153/CJM-1969-137-x
- BUCKLEY, S., Estimates for operator norms on weighted space and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340, 1 (1993), 253-257. Zbl0795.42011MR1124164DOI10.2307/2154555
- COIFMAN, R. R. - FEFFERMAN, C., Weighted norm inqualities for the maximal functions and singular integrals, Studia Math., 54 (1974), 221-237. MR358205DOI10.4064/sm-51-3-241-250
- CALDERÓN, A. P., Inqualities for the maximal functions relative to a metric, Studia Math., 49 (1976), 297-306. MR442579DOI10.4064/sm-57-3-297-306
- DAHLBERG, B. E. J., On estimates of harmonic measure, Arch. Rat. Mech. Anal., 65 (1977), 272-288. Zbl0406.28009MR466593DOI10.1007/BF00280445
- DAHLBERG, B. E. J., On the Poisson integral for Lipschitz and domains, Studia Math., 66 (1979), 7-24. Zbl0422.31008MR562447DOI10.4064/sm-66-1-13-24
- GARCIA-CUERVA, J. - RUBIO DE FRANCIA, J. L., Weighted norm inqualities and related topics, North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, (1985). Zbl0578.46046MR807149
- KENIG, CARLOS E., Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Conference Board of the Mathematical Sciences, Amer. Math. Soc.83 (1991). MR1282720DOI10.1090/cbms/083
- KERMAN, R. A. - TORCHINSKY, A., Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284. Zbl0517.42030MR667316DOI10.4064/sm-71-3-277-284
- MATUSZEWSKA, W. - ORLICZ, W., On certain properties of W-functions, Bull. Acad. Polon. Sci., 8, 7 , (1960), 439-443. Zbl0101.09001MR126158
- MOSCARIELLO, G. - SBORDONE, C., as a limit case of reverse - Hölder inequality when the exponent tends to 1, Ricerche Mat., XLIV, 1 (1995), 131-144. Zbl0920.26017MR1470190
- MUCKENHOUPT, B., Weighted norm inqualities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. Zbl0236.26016MR293384DOI10.2307/1995882
- STEIN, E. M. - WEISS, G., An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech., 8 (1959), 263-264. Zbl0084.10801MR107163
- ZECCA, G., The unsolvability of the Dirichlet problem with boundary data, Rend. Acc. Sc. Fis. Mat. Napoli, 72 (2005), 71-80. Zbl1211.35090MR2449907
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.