La Congettura di Poincaré e il Flusso di Ricci

Riccardo Benedetti; Carlo Mantegazza

Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2017)

  • Volume: 2, Issue: 3, page 245-289
  • ISSN: 2499-751X

Abstract

top
Our aim is to present, at least partially, the great twine of ideas, techniques and concepts developed around the Poincaré conjecture, from its formulation at the beginning of last century to its solution due to Grisha Perelman at the beginning of the new millennium, completing the program based on the Ricci flow of Riemannian metrics on a 3-manifold, outlined and developed by Richard Hamilton since the '80s. In the limits and possibilities of a review paper, we wanted to present in a mathematically satisfactory way at least some of the crucial notions and ideas, starting from the precise formulation of the conjecture, using only basic concepts of linear algebra, geometry and differential calculus in the Euclidean space n , that should be familiar to the reader. The result is possibly a "demanding" reading, not necessarily "recreational", but which, in our intentions, should reward the reader with a quite faithful image of these extraordinary intellectual achievements, individual and collective, composing one of the greatest and deepest pages of the history of mathematics.

How to cite

top

Benedetti, Riccardo, and Mantegazza, Carlo. "La Congettura di Poincaré e il Flusso di Ricci." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 2.3 (2017): 245-289. <http://eudml.org/doc/290393>.

@article{Benedetti2017,
abstract = {Si intende presentare, almeno in parte, l'imponente intreccio di idee, tecniche e acquisizioni concettuali che si è sviluppato intorno alla congettura di Poincaré, dalla sua formulazione agli inizi del secolo scorso fino alla soluzione data da Grisha Perelman agli inizi del nuovo millennio, portando a compimento il programma basato sullo studio del flusso di Ricci di metriche riemanniane su una data 3-varietà, delineato e sviluppato da Richard Hamilton dagli anni '80. Pur nei limiti e nelle possibilità di un articolo di rassegna, si è voluto presentare in modo matematicamente compiuto almeno alcune delle nozioni ed idee cruciali, a partire dalla formulazione stessa della congettura, disponendo soltanto di nozioni di base di algebra lineare, geometria e calcolo differenziale negli spazi euclidei $\mathbb\{R\}^n$, che si suppongono familiari al lettore. Ne risulterà probabilmente una lettura "impegnativa", non necessariamente "ricreativa", che però, almeno nelle intenzioni degli autori, dovrebbe ripagare il lettore con un'immagine piuttosto fedele di questi formidabili processi intellettuali, individuali e collettivi, che compongono una delle pagine più belle e profonde della storia della matematica.},
author = {Benedetti, Riccardo, Mantegazza, Carlo},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {245-289},
publisher = {Unione Matematica Italiana},
title = {La Congettura di Poincaré e il Flusso di Ricci},
url = {http://eudml.org/doc/290393},
volume = {2},
year = {2017},
}

TY - JOUR
AU - Benedetti, Riccardo
AU - Mantegazza, Carlo
TI - La Congettura di Poincaré e il Flusso di Ricci
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2017/12//
PB - Unione Matematica Italiana
VL - 2
IS - 3
SP - 245
EP - 289
AB - Si intende presentare, almeno in parte, l'imponente intreccio di idee, tecniche e acquisizioni concettuali che si è sviluppato intorno alla congettura di Poincaré, dalla sua formulazione agli inizi del secolo scorso fino alla soluzione data da Grisha Perelman agli inizi del nuovo millennio, portando a compimento il programma basato sullo studio del flusso di Ricci di metriche riemanniane su una data 3-varietà, delineato e sviluppato da Richard Hamilton dagli anni '80. Pur nei limiti e nelle possibilità di un articolo di rassegna, si è voluto presentare in modo matematicamente compiuto almeno alcune delle nozioni ed idee cruciali, a partire dalla formulazione stessa della congettura, disponendo soltanto di nozioni di base di algebra lineare, geometria e calcolo differenziale negli spazi euclidei $\mathbb{R}^n$, che si suppongono familiari al lettore. Ne risulterà probabilmente una lettura "impegnativa", non necessariamente "ricreativa", che però, almeno nelle intenzioni degli autori, dovrebbe ripagare il lettore con un'immagine piuttosto fedele di questi formidabili processi intellettuali, individuali e collettivi, che compongono una delle pagine più belle e profonde della storia della matematica.
LA - ita
UR - http://eudml.org/doc/290393
ER -

References

top
  1. ALEXANDER, J. W., An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. USA10 (1924), no. 1, 8-10. 
  2. BENEDETTI, R. and PETRONIO, C., Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. Zbl0768.51018MR1219310DOI10.1007/978-3-642-58158-8
  3. BESSIEÁRES, L., Conjecture de Poincaré: la preuve de R. Hamilton et G. Perelman, Gazette des Mathématiciens106 (2005), 7-35. MR3087240
  4. BESSIEÁRES, L., BESSON, G., BOILEAU, M., MAILLOT, S., and PORTI, J., Geometrisation of 3-manifolds, EMS Tracts in Mathematics, vol. 13, European Mathematical Society (EMS), Zürich, 2010. Zbl1244.57003MR2683385DOI10.4171/082
  5. BRENDLE, S., Convergence of the Yamabe flow for arbitrary initial energy, J. Diff. Geom.69 (2005), no. 2, 217-278. Zbl1085.53028MR2168505
  6. CAO, H.-D. and ZHU, X.-P., A complete proof of the Poincaré and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math.10 (2006), no. 2, 165-492. Zbl1200.53057MR2233789DOI10.4310/AJM.2006.v10.n2.a2
  7. CHEN, X., LU, P., and TIAN, G., A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc.134 (2006), no. 11, 3391-3393 (electronic). Zbl1113.53042MR2231924DOI10.1090/S0002-9939-06-08360-2
  8. COLDING, T. H. and MINICOZZI II, W. P., Width and finite extinction time of Ricci flow, Geom. Topol.12 (2008), no. 5, 2537-2586. Zbl1161.53352MR2460871DOI10.2140/gt.2008.12.2537
  9. DONALDSON, S. K., An application of gauge theory to four-dimensional topology, J. Differential Geom.18 (1983), no. 2, 279-315. Zbl0507.57010MR710056
  10. ECKER, K., Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston Inc., Boston, MA, 2004. MR2024995DOI10.1007/978-0-8176-8210-1
  11. ELLS, J. and SAMPSON, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), 109-160. Zbl0122.40102MR164306DOI10.2307/2373037
  12. FREEDMAN, M. H., The topology of four-dimensional manifolds, J. Differential Geom.17 (1982), no. 3, 357-453. Zbl0528.57011MR679066
  13. GABAI, D., Foliations and the topology of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 1, 77-80. Zbl0539.57013MR682826DOI10.1090/S0273-0979-1983-15089-9
  14. GAGE, M., An isoperimetric inequality with applications to curve shortening, Duke Math. J.50 (1983), no. 4, 1225-1229. Zbl0534.52008MR726325DOI10.1215/S0012-7094-83-05052-4
  15. GAGE, M., Curve shortening makes convex curves circular, Invent. Math.76 (1984), 357-364. Zbl0542.53004MR742856DOI10.1007/BF01388602
  16. GAGE, M. and HAMILTON, R. S., The heat equation shrinking convex plane curves, J. Diff. Geom.23 (1986), 69-95. Zbl0621.53001MR840401
  17. GALLOT, S., HULIN, D., and LAFONTAINE, J., Riemannian geometry, Springer-Verlag, 1990. MR1083149DOI10.1007/978-3-642-97242-3
  18. GRAYSON, M. A., The heat equation shrinks embedded plane curves to round points, J. Diff. Geom.26 (1987), 285-314. Zbl0667.53001MR906392
  19. L. GUILLOU and A. MARIN (eds.), À la recherche de la topologie perdue, Progress in Mathematics, vol. 62, Birkhäuser Boston, Inc., Boston, MA, 1986, I. Du côté de chez Rohlin. II. Le côté de Casson. [I. Rokhlin's way. II. Casson's way]. Zbl0597.57001MR900243
  20. HAMILTON, R. S., Three-manifolds with positive Ricci curvature, J. Diff. Geom.17 (1982), no. 2, 255-306. Zbl0504.53034MR664497
  21. HAMILTON, R. S., Four-manifolds with positive curvature operator, J. Diff. Geom.24 (1986), no. 2, 153-179. Zbl0628.53042MR862046
  22. HAMILTON, R. S., The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. MR954419DOI10.1090/conm/071/954419
  23. HAMILTON, R. S., The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, pp. 7-136. MR1375255
  24. HAMILTON, R. S., Four-manifolds with positive isotropic curvature, Comm. Anal. Geom.5 (1997), no. 1, 1-92. Zbl0892.53018MR1456308DOI10.4310/CAG.1997.v5.n1.a1
  25. JACO, W., Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. Zbl0433.57001MR565450
  26. JOHANNSON, K., Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. Zbl0412.57007MR551744
  27. KERVAIRE, M. A. and MILNOR, J. W., Groups of homotopy spheres. I, Ann. of Math. (2)77 (1963), 504-537. Zbl0115.40505MR148075DOI10.2307/1970128
  28. KIRBY, R., A calculus for framed links in S 3 , Invent. Math.45 (1978), no. 1, 35-56. Zbl0377.55001MR467753DOI10.1007/BF01406222
  29. KLEINER, B. and LOTT, J., Notes on Perelman's papers, ArXiv Preprint Server - http://arxiv.org, 2006. MR2460872DOI10.2140/gt.2008.12.2587
  30. KLEINER, B. and LOTT, J., Notes on Perelman's papers, Geom. Topol.12 (2008), no. 5, 2587-2855. Zbl1204.53033MR2460872DOI10.2140/gt.2008.12.2587
  31. LICKORISH, W. B. R., A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. Zbl0106.37102MR151948DOI10.2307/1970373
  32. MANTEGAZZA, C., Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/SpringerBasel AG, Basel, 2011. Zbl1230.53002MR2815949DOI10.1007/978-3-0348-0145-4
  33. MILNOR, J. W., On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 399-405. Zbl0072.18402MR82103DOI10.2307/1969983
  34. MILNOR, J. W., A unique decomposition theorem for 3-manifolds, Amer. J. Math.84 (1962), 1-7. Zbl0108.36501MR142125DOI10.2307/2372800
  35. MILNOR, J. W., Lectures on the h-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. Zbl0161.20302MR190942
  36. MILNOR, J. W., Topology from the differentiable viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va., 1965. Zbl0136.20402MR226651
  37. MOISE, E. E., Geometric topology in dimensions 2 and 3, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, Vol. 47. Zbl0349.57001MR488059
  38. MORGAN, J., The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. Zbl0846.57001MR1367507
  39. MORGAN, J. and TIAN, G., Ricci flow and the Poincaré conjecture, ArXiv Preprint Server - http://arxiv.org, 2006. MR2334563
  40. MORGAN, J. and TIAN, G., Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. MR2334563
  41. MORGAN, J. and TIAN, G., Completion of the proof of the geometrization conjecture, ArXiv Preprint Server - http://arxiv.org, 2008. MR3186136
  42. MORGAN, J. and TIAN, G., The geometrization conjecture, Clay Mathematics Monographs, vol. 5, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. Zbl1302.53001MR3186136
  43. NEUMANN, W. D. and SWARUP, G. A., Canonical decompositions of 3-manifolds, Geom. Topol.1 (1997), 21-40 (electronic). Zbl0886.57009MR1469066DOI10.2140/gt.1997.1.21
  44. NEWMAN, M. H. A., The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555-571. Zbl0166.19801MR203708DOI10.2307/1970460
  45. PERELMAN, G., The entropy formula for the Ricci flow and its geometric applications, ArXiv Preprint Server http://arxiv.org, 2002. Zbl1130.53001
  46. PERELMAN, G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, ArXiv Preprint Server - http://arxiv.org, 2003. Zbl1130.53003
  47. PERELMAN, G., Ricci flow with surgery on three-manifolds, ArXiv Preprint Server - http://arxiv.org, 2003. Zbl1130.53002
  48. PETERSEN, P., Riemannian geometry, second ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006. MR2243772
  49. ROURKE, C. P. and SANDERSON, B. J., Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. Zbl0254.57010MR350744
  50. SCHWETLICK, H. and STRUWE, M., Convergence of the Yamabe flow for "large" energies, J. Reine Angew. Math.562 (2003), 59-100. Zbl1079.53100MR2011332DOI10.1515/crll.2003.078
  51. SMALE, S., Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406. Zbl0099.39202MR137124DOI10.2307/1970239
  52. SMALE, S., On the structure of manifolds, Amer. J. Math.84 (1962), 387-399. Zbl0109.41103MR153022DOI10.2307/2372978
  53. STALLINGS, J. R., Polyhedral homotopy-spheres, Bull. Amer. Math. Soc.66 (1960), 485-488. Zbl0111.18901MR124905DOI10.1090/S0002-9904-1960-10511-3
  54. TAO, T., Perelman's proof of the Poincaré conjecture: a nonlinear PDE perspective, ArXiv Preprint Server http://arxiv.org, 2006. MR2647628
  55. THURSTON, W. P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.)6 (1982), no. 3, 357-381. Zbl0496.57005MR648524DOI10.1090/S0273-0979-1982-15003-0
  56. THURSTON, W. P., Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997, Edited by Silvio Levy. Zbl0873.57001MR1435975
  57. WALDHAUSEN, F., On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. Zbl0157.30603MR224099DOI10.2307/1970594
  58. WALLACE, A. H., Modifications and cobounding manifolds, Canad. J. Math.12 (1960), 503-528. Zbl0108.36101MR125588DOI10.4153/CJM-1960-045-7
  59. WHITE, B., Evolution of curves and surfaces by mean curvature, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 2002, pp. 525-538. Zbl1036.53045MR1989203
  60. WHITEHEAD, J. H. C., A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser.6 (1939), 268-279. Zbl61.0607.01MR174464
  61. WHITEHEAD, J. H. C., Certain theorems about three-dimensional manifolds (I), Quart. J. Math. Oxford Ser. 5 (1939), 308-320. Zbl0010.27504MR174464
  62. YE, R., Global existence and convergence of Yamabe flow, J. Diff. Geom.39 (1994), no. 1, 35-50. Zbl0846.53027MR1258912
  63. ZEEMAN, E. C., The Poincaré conjecture for n 5 , Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 198-204. MR140113

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.