The Banach-Lie Group of Lie Automorphisms of an -Algebra
Antonio J. Calderón Martín; Candido Martín González
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 623-631
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCalderón Martín, Antonio J., and Martín González, Candido. "The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 623-631. <http://eudml.org/doc/290408>.
@article{CalderónMartín2007,
abstract = {We study the Banach-Lie group $\operatorname\{Aut\}(A^-)$ of Lie automorphisms of a complex associative $H^*$-algebra. Also some consequences about its Lie algebra, the algebra of Lie derivations of $A$, are obtained. For a topologically simple $A$, in the infinite-dimensional case we have $\operatorname\{Aut\}(A^-)_0 = \operatorname\{Aut\}(A)$ implying $\operatorname\{Der\}(A) = \operatorname\{Der\}(A^-)$. In the finite dimensional case $\operatorname\{Aut\}(A^\{-\})_\{0\}$ is a direct product of $\operatorname\{Aut\}(A)$ and a certain subgroup of Lie derivations $\delta$ from $A$ to its center, annihilating commutators.},
author = {Calderón Martín, Antonio J., Martín González, Candido},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {623-631},
publisher = {Unione Matematica Italiana},
title = {The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra},
url = {http://eudml.org/doc/290408},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Calderón Martín, Antonio J.
AU - Martín González, Candido
TI - The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 623
EP - 631
AB - We study the Banach-Lie group $\operatorname{Aut}(A^-)$ of Lie automorphisms of a complex associative $H^*$-algebra. Also some consequences about its Lie algebra, the algebra of Lie derivations of $A$, are obtained. For a topologically simple $A$, in the infinite-dimensional case we have $\operatorname{Aut}(A^-)_0 = \operatorname{Aut}(A)$ implying $\operatorname{Der}(A) = \operatorname{Der}(A^-)$. In the finite dimensional case $\operatorname{Aut}(A^{-})_{0}$ is a direct product of $\operatorname{Aut}(A)$ and a certain subgroup of Lie derivations $\delta$ from $A$ to its center, annihilating commutators.
LA - eng
UR - http://eudml.org/doc/290408
ER -
References
top- AMBROSE, W., Structure theorems for a special class of Banach Algebras, Trans. Amer. Math. Soc.57 (1945), 364-386. Zbl0060.26906MR13235DOI10.2307/1990182
- BREŠAR, M., Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc.335 (1993), 525-546. Zbl0791.16028MR1069746DOI10.2307/2154392
- CABRERA, M. - MARTÍNEZ, J. - RODRÍGUEZ, A., Structurable -algebras, J. Algebra147 (1992) 19-62. MR1154673DOI10.1016/0021-8693(92)90251-G
- CALDERÓN, A. J. - MARTÍN, C., Lie isomorphisms on -algebras, Comm. Algebra, 31 No. 1 (2003), 333-343. MR1969226DOI10.1081/AGB-120016762
- CUENCA, J. A., Sobre -álgebras no asociativas. Teoría de estructura de las -álgebras de Jordan no conmutativas semisimples, Tesis Doctoral, Universidad de a Granada, 1982. MR853913
- CUENCA, J. A. - GARCÍA, A. - MARTÍN, C., Structure Theory for -álgebras, Math. Proc. Cambridge Philos. Soc.107, No. 2 (1990), 361-365. MR1027788DOI10.1017/S0305004100068626
- CUENCA, J. A. - RODRÍGUEZ, A., Structure Theory for noncommutative Jordan -algebras, J. Algebra, 106 (1987), 1-14. MR878465DOI10.1016/0021-8693(87)90018-4
- JACOBSON, N., Lie algebras, Interscience. 1962. MR143793
- JACOBSON, N., Structure of Rings, Colloq. Publ. Vol. 37, Amer. Math. Soc., second edition, 1956. Zbl0073.02002MR81264
- KAPLANSKY, I., Lie algebras and locally compact groups, The University of Chicago Press. 1971. Zbl0223.17001MR276398
- MATHIEU, M. - VILLENA, A. R., Lie and Jordan derivations from Von Neumann Algebras, Preprint.
- SCHUE, J. R., Hilbert Space methods in the theory of Lie algebras, Trans. Amer. Math. Soc., 95 (1960), 69-80. Zbl0093.30601MR117575DOI10.2307/1993330
- SCHRÖDER, H., On the topology of the group of invertible elements, arXiv:math.KT/9810069v1, 1998.
- UPMEIER, H., Symmetric Banach Manifolds and Jordan -algebras, North-Holland Math. Studies, 104 (1985). MR776786
- VILLENA, A. R., Continuity of Derivations on -algebras, Proc. Amer. Math. Soc., 122 (1994), 821-826. Zbl0822.46061MR1207543DOI10.2307/2160760
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.