A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients
Carmela Vitanza; Pietro Zamboni
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 2, page 341-356
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVitanza, Carmela, and Zamboni, Pietro. "A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients." Bollettino dell'Unione Matematica Italiana 10-B.2 (2007): 341-356. <http://eudml.org/doc/290422>.
@article{Vitanza2007,
abstract = {In this note we obtain the existence and the uniqueness of the solution of a variational inequality associated to the degenerate operator \begin\{equation*\}\tag\{*\} Lu = - \sum^n\_\{i,j=1\} (a\_\{ij\}(x)u\_\{x\_i\} + d\_j u)\_\{x\_j\} + \sum^n\_\{i=1\} b\_i u\_\{x\_i\} + cu\end\{equation*\} assuming the coefficients of the lower terms and the known term belonging to a suitable degenerate Stummel-Kato class. The weight $w$, which gives the degeneration, belongs to the Muckenoupt class $A^2$.},
author = {Vitanza, Carmela, Zamboni, Pietro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {341-356},
publisher = {Unione Matematica Italiana},
title = {A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients},
url = {http://eudml.org/doc/290422},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Vitanza, Carmela
AU - Zamboni, Pietro
TI - A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/6//
PB - Unione Matematica Italiana
VL - 10-B
IS - 2
SP - 341
EP - 356
AB - In this note we obtain the existence and the uniqueness of the solution of a variational inequality associated to the degenerate operator \begin{equation*}\tag{*} Lu = - \sum^n_{i,j=1} (a_{ij}(x)u_{x_i} + d_j u)_{x_j} + \sum^n_{i=1} b_i u_{x_i} + cu\end{equation*} assuming the coefficients of the lower terms and the known term belonging to a suitable degenerate Stummel-Kato class. The weight $w$, which gives the degeneration, belongs to the Muckenoupt class $A^2$.
LA - eng
UR - http://eudml.org/doc/290422
ER -
References
top- AIZENMAN, M. - SIMON, B., Brownian motion and Harnack inequality for Schrodinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273. Zbl0459.60069MR644024DOI10.1002/cpa.3160350206
- CHIARENZA, F., Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. Zbl0838.35022MR1354887DOI10.1007/BF01053450
- CHIARENZA, F. - FABES, E. - GAROFALO, N., Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. Zbl0626.35022MR857933DOI10.2307/2046194
- CHIARENZA, F. - FRASCA, M., Una disequazione variazionale associata a un operatore ellittico con degenerazione di tipo , Le Matematiche, 37 (1982), 239-250
- FABES, E. - JERISON, D. - KENIG, C., The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), 32 (1982), 151-182. Zbl0488.35034MR688024
- FABES, E. - KENIG, C. - SERAPIONI, R., The local regularity of solutions of degenerate elliptic equations, Comm. P.D.E., 7 (1982), 77-116. Zbl0498.35042MR643158DOI10.1080/03605308208820218
- GARCIA CUERVA, J. - RUBIO DE FRANCIA, J. L., Weighted norm inequalities and related topics (North-Holland, Amsterdam, 1985). MR807149
- GUTIERREZ, C., Harnack's inequality for degenerate Schrödinger operators, Trans. A.M.S., 312 (1989), 403-419. Zbl0685.35020MR948190DOI10.2307/2001222
- LADYZHENSKAYA, O. - URAL'TSEVA, N., Linear and quasilinear elliptic equations (Accad. Press1968). MR244627
- LIONS, J. L. - STAMPACCHIA, G., Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519. MR216344DOI10.1002/cpa.3160200302
- MARINA, M. E., Una diseguaglianza variazionale associata a un operatore ellittico che puo degenerare e con condizioni al contorno di tipo misto, Rend. Sem. Mat. Padova, 54 (1975), 107-121. Zbl0354.35030MR481461
- MUCKENOUPT, B., Weigthed norm inequalities for the Hardy maximal functions, Trans. A.M.S., 165 (1972), 207-226. MR293384DOI10.2307/1995882
- MURTHY, K.V. - STAMPACCHIA, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pure Appl., 80 (1968), 1-122. Zbl0185.19201MR249828DOI10.1007/BF02413623
- SIMADER, C., An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z., 203 (1990), 129-152. Zbl0697.35017MR1030712DOI10.1007/BF02570727
- STAMPACCHIA, G., Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier Grenoble, 15 (1965), 198-258. Zbl0151.15401MR192177
- VITANZA, C. - ZAMBONI, P., Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger perators, Le Matematiche, 52 (1997), 393-409. MR1626460
- ZAMBONI, P., The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. Zbl0954.35063MR1777522DOI10.1007/s002290050002
- ZAMBONI, P., Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. of Differential equations, 182 (2002), 121-140. Zbl1014.35036MR1912072DOI10.1006/jdeq.2001.4094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.