Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type B d

Francesca Vetro

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 1, page 87-103
  • ISSN: 0392-4041

Abstract

top
Let X , X , Y be smooth projective complex curves with Y curve of genus 1 . Let d be an integer 3 , let e ¯ = ( e 1 , , e r ) be a partition of d and let | e | = i = 1 r ( e i - 1 ) . Let X 𝜋 X 𝑓 Y be a sequence of coverings where π is a degree 2 branched covering and f is a degree d covering, with monodromy group S d , branched in n 2 + 1 points, one of which is special point c whose local monodromy has cycle type given by e ¯ . Moreover the branch locus of the covering π is contained in f - 1 ( c ) . In this paper we prove the irreducibility of the Hurwitz spaces that parameterize sequences of coverings as above with monodromy group a Weyl group of type D d when n 2 + | e ¯ | 2 d . Besides we determine the connected components of the Hurwitz spaces that parameterize sequences of coverings as above but with monodromy group a Weyl group of type B d .

How to cite

top

Vetro, Francesca. "Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type $B_d$." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 87-103. <http://eudml.org/doc/290460>.

@article{Vetro2008,
abstract = {Let $X$, $X'$, $Y$ be smooth projective complex curves with $Y$ curve of genus $\geq 1$. Let $d$ be an integer $\geq 3$, let $\underline\{e\} = (e_\{1\}, \ldots, e_\{r\})$ be a partition of $d$ and let $|e|= \sum_\{i=1\}^\{r\}(e_i - 1)$. Let $X \xrightarrow\{\pi\} X' \xrightarrow\{f\} Y$ be a sequence of coverings where $\pi$ is a degree 2 branched covering and $f$ is a degree $d$ covering, with monodromy group $S_d$, branched in $n_2 + 1$ points, one of which is special point $c$ whose local monodromy has cycle type given by $\underline\{e\}$. Moreover the branch locus of the covering $\pi$ is contained in $f^\{-1\} (c)$. In this paper we prove the irreducibility of the Hurwitz spaces that parameterize sequences of coverings as above with monodromy group a Weyl group of type $D_d$ when $n_2 +|\underline\{e\}| \geq 2d$. Besides we determine the connected components of the Hurwitz spaces that parameterize sequences of coverings as above but with monodromy group a Weyl group of type $B_d$.},
author = {Vetro, Francesca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {87-103},
publisher = {Unione Matematica Italiana},
title = {Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type $B_d$},
url = {http://eudml.org/doc/290460},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Vetro, Francesca
TI - Connected Components of Hurwitz Spaces of Coverings with One Special Fiber and Monodromy Groups Contained in a Weyl Group of Type $B_d$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 87
EP - 103
AB - Let $X$, $X'$, $Y$ be smooth projective complex curves with $Y$ curve of genus $\geq 1$. Let $d$ be an integer $\geq 3$, let $\underline{e} = (e_{1}, \ldots, e_{r})$ be a partition of $d$ and let $|e|= \sum_{i=1}^{r}(e_i - 1)$. Let $X \xrightarrow{\pi} X' \xrightarrow{f} Y$ be a sequence of coverings where $\pi$ is a degree 2 branched covering and $f$ is a degree $d$ covering, with monodromy group $S_d$, branched in $n_2 + 1$ points, one of which is special point $c$ whose local monodromy has cycle type given by $\underline{e}$. Moreover the branch locus of the covering $\pi$ is contained in $f^{-1} (c)$. In this paper we prove the irreducibility of the Hurwitz spaces that parameterize sequences of coverings as above with monodromy group a Weyl group of type $D_d$ when $n_2 +|\underline{e}| \geq 2d$. Besides we determine the connected components of the Hurwitz spaces that parameterize sequences of coverings as above but with monodromy group a Weyl group of type $B_d$.
LA - eng
UR - http://eudml.org/doc/290460
ER -

References

top
  1. BIGGERS, R. - FRIED, M., Irreducibility of moduli spaces of cyclic unramified covers of genus g curves, Trans. Amer. Math. Soc., 295, no. 1 (1986), 59-70. Zbl0601.14022MR831188DOI10.2307/2000145
  2. BIRMAN, J. S., On braid groups, Comm. Pure Appl. Math., 22 (1998), 41-72. Zbl0157.30904MR234447DOI10.1002/cpa.3160220104
  3. BOURBAKI, N., Groupes et algebres de Lie, Ch. 4-6, Éléments de Mathématique, 34 (1968), Hermann, Paris. MR573068
  4. CARTER, R. W., Conjugacy classes in the Weyl group, Compositio Math., 25 (1972), 1- 59. Zbl0254.17005MR318337
  5. DONAGI, R., Decomposition of spectral covers, Astérisque, 218 (1993), 145-175. Zbl0820.14031MR1265312
  6. FADELL, E. - NEUWIRTH, L., Configuration spaces, Math. Scand., 10 (1962), 111-118. Zbl0136.44104MR141126DOI10.7146/math.scand.a-10517
  7. FRIED, M. - VÖLKLEIN, H., The inverse Galois problem and rational points on moduli spaces, Mathematische Annalen290, no. 4 (1991), 771-800. MR1119950DOI10.1007/BF01459271
  8. FULTON, W., Hurwitz Schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2), 10 (1969), 542-575. Zbl0194.21901MR260752DOI10.2307/1970748
  9. GRABER, T. - HARRIS, J. - STARR, J., A note on Hurwitz schemes of covers of a positive genus curve, preprint, arXiv: math. AG/0205056. 
  10. GRABER, T. - HARRIS, J. - STARR, J., Families of rationally connected varieties, J. Amer. Math. Soc., 16, no. 1 (2003), 57-67. Zbl1092.14063MR1937199DOI10.1090/S0894-0347-02-00402-2
  11. HURWITZ, A., Ueber Riemann'schen Flachen mit gegebenen Verzweigungspunkten, Math. Ann., 39 (1891), 1-61. Zbl23.0429.01MR1510692DOI10.1007/BF01199469
  12. KANEV, V., Spectral curves, simple Lie algebras, and Prym-Tjurin varieties, Theta functions-Bowdoin 1987, Part 1, (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, (1989), 627-645. MR1013158
  13. KANEV, V., Spectral curves and Prym-Tjurin varietis. I, Abelian varieties (Egloffstein, 1993), de Gruyter, Berlin1995, 151-198. Zbl0856.14010MR1336606
  14. KANEV, V., Irreducibility of Hurwitz spaces, Preprint N. 241, February 2004, Dipartimento di Matematica ed Applicazioni, Università degli Studi di Palermo, arXiv: math. AG/0509154. Zbl1219.14053
  15. KANEV, V., Hurwitz spaces of Galois coverings of 1 with Galois groups Weyl groups, J. Algebra, 305 (2006), 442-456. Zbl1118.14034MR2264138DOI10.1016/j.jalgebra.2006.01.008
  16. KLUITMANN, P., Hurwitz action and finite quotients of braid groups, in: Braids (Santa Cruz, CA, 1986), in: Contemp. Math., 78, Amer. Math. Soc., Providence, RI, (1988), 299-325. MR975086DOI10.1090/conm/078/975086
  17. MOCHIZUKI, S., The geometry of the compactification of the Hurwitz Scheme, Publ. Res. Inst. Math. Sci., 31 (1995), 355-441. Zbl0866.14013MR1355945DOI10.2977/prims/1195164048
  18. NATANZON, S. M., Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves, Selected translations., Selecta Math. Soviet., 12, no. 3 (1993), 251-291. MR1244839
  19. SCOTT, G. P., Braid groups and the group of homeomorphisms of a surface, Proc. Cambrige Philos. Soc., 68 (1970), 605-617. Zbl0203.56302MR268889
  20. SEVERI, F., Vorlesungen uber algebraische Geometrie, Teubuer, Leibzig, 1921. MR245574
  21. VETRO, F., Irreducibility of Hurwitz spaces of coverings with one special fiber, Indag. Mathem., 17, no. 1 (2006), 115-127. Zbl1101.14040MR2337168DOI10.1016/S0019-3577(06)80010-8
  22. VETRO, F., Irreducibility of Hurwitz spaces of coverings with monodromy groups Weyl groups of type W ( B d ) , Bollettino U.M.I., (8) 10-B (2007), 405-431. Zbl1178.14029MR2339450

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.